Advertisement
Journal of Prosthetic Dentistry

Influence of various airborne-particle abrasion conditions on bonding between zirconia ceramics and an indirect composite resin material

      Abstract

      Statement of problem

      Indirect composite resins (ICRs) have been suggested as veneering materials for implant-supported zirconia-based fixed dental prostheses; however, obtaining a durable bond between the zirconia ceramic and the ICR is a challenge.

      Purpose

      The purpose of this in vitro study was to evaluate the influence of airborne-particle abrasion conditions on the bond strength between 2 kinds of zirconia (yttria-stabilized tetragonal zirconia polycrystal [Y-TZP] and ceria-stabilized tetragonal zirconia/alumina nanocomposite [Ce-TZP/A]) and an ICR.

      Material and methods

      Zirconia disks were prepared by using computer-aided design and computer-aided manufacturing (CAD-CAM) systems. Specimens were airborne-particle abraded with different particle sizes (25, 50, 90, 125 μm) and jet pressures (0.1, 0.2, 0.3, 0.4 MPa). The control group (CO) was not subjected to airborne-particle abrasion. The surface roughness (Ra) of the specimens was measured. Subsequently, the specimens were treated with a primer and bonded with a light-activated composite resin, and the shear bond strength (SBS) was tested. The obtained data were analyzed by using multivariate analysis of variance, the Spearman rank-order correlation, and the Mann-Whitney U test (α=.05). After the SBS test, the interface failure modes were observed by scanning electron microscopy, and X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical changes of the zirconia surface.

      Results

      The Ra values increased significantly (P<.05) after airborne-particle abrasion with a positive correlation with both particle size and jet pressure. The airborne-particle abraded specimens exhibited significantly higher bond strength after thermocycling (P<.05) than the CO. Nevertheless, the bond strength was not significantly different among different airborne-particle abrasion treatments (P>.05). Additionally, Y-TZP had higher mean bond strength values than Ce-TZP/A. The XPS results revealed that after airborne-particle abrasion, the alumina particles mechanically adhered to the zirconia surface.

      Conclusions

      Within the limitations of this in vitro study, airborne-particle abrasion improved the bond strength between zirconia and ICR; however, particle size or jet pressure were not influencing factors.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hamann C.P.
        • DePaola L.G.
        • Rodgers P.A.
        Occupation-related allergies in dentistry.
        J Am Dent Assoc. 2005; 136: 500-510
        • Tanimoto Y.
        Dental materials used for metal-free restorations: recent advances and future challenges.
        J Prosthodont Res. 2015; 59: 213-215
        • Tashkandi E.
        Effect of surface treatment on the micro-shear bond strength to zirconia.
        Saudi Dent J. 2009; 21: 113-116
        • Nawa M.
        • Nakamoto S.
        • Sekino T.
        • Niihara K.
        Tough and strong Ce-TZP/alumina nanocomposites doped with titania.
        Ceram Int. 1998; 24: 497-506
        • Baba K.
        Paradigm shifts in prosthodontics.
        J Prosthodont Res. 2014; 58: 1-2
        • Urano S.
        • Hotta Y.
        • Miyazaki T.
        • Baba K.
        Bending properties of Ce-TZP/A nanocomposite clasps for removable partial dentures.
        Int J Prosthodont. 2015; 28: 191-197
        • Yoshiyuki H.
        • Kiyoshi N.
        Application of Ce-TZP/Al2O3 nanocomposite to the framework of an implant-fixed complete dental prosthesis and a complete denture.
        J Prosthodont Res. 2016; 60: 337-343
        • Peng T.Y.
        • Shimoe S.
        • Tanoue N.
        • Akebono H.
        • Murayama T.
        • Satoda T.
        Fatigue resistance of yttria-stabilized tetragonal zirconia polycrystal clasps for removable partial dentures.
        Eur J Oral Sci. 2019; 127: 269-275
        • Tanaka K.
        • Tamura J.
        • Kawanabe K.
        • Nawa M.
        • Oka M.
        • Uchida M.
        • et al.
        Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement.
        J Biomed Mater Res Part B. 2002; 63: 262-270
        • Kurtz S.M.
        • Kocagöz S.
        • Arnholt C.
        • Huet R.
        • Ueno M.
        • Walter W.L.
        Advances in zirconia toughened alumina biomaterials for total joint replacement.
        J Mech Behav Biomed Mater. 2014; 31: 107-116
        • Sato H.
        • Yamashita D.
        • Ban S.
        Relation between biaxial flexure strength and phase transformation of zirconia with surface treatments.
        J Ceram Soc Jpn. 2008; 116: 28-30
        • Soon G.
        • Pingguan-Murphy B.
        • Lai K.W.
        • Akbar S.A.
        Review of zirconia-based bioceramic: surface modification and cellular response.
        Ceram Int. 2016; 42: 12543-12555
        • Luthardt R.G.
        • Holzhüter M.
        • Sandkuhl O.
        • Herold V.
        • Schnapp J.D.
        • Kuhlisch E.
        • et al.
        Reliability and properties of ground Y-TZP-zirconia ceramics.
        J Dent Res. 2002; 81: 487-491
        • Sato H.
        • Yamada K.
        • Pezzotti G.
        • Nawa M.
        • Ban S.
        Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment.
        Dent Mater J. 2008; 27: 408-414
        • Miyazaki T.
        • Nakamura T.
        • Matsumura H.
        • Ban S.
        • Kobayashi T.
        Current status of zirconia restoration.
        J Prosthodont Res. 2013; 57: 236-261
        • Chevalier J.
        • Gremillard L.
        • Virkar A.V.
        • Clarke D.R.
        The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends.
        J Aust Ceram Soc. 2009; 92: 1901-1920
        • Tiossi R.
        • Lin L.
        • Conrad H.J.
        • Rodrigues R.C.
        • Heo Y.C.
        • de Mattos Mda G.
        • et al.
        A digital image correlation analysis on the influence of crown material in implant-supported prostheses on bone strain distribution.
        J Prosthodont Res. 2012; 56: 25-31
        • Sailer I.
        • Strasding M.
        • Valente N.A.
        • Zwahlen M.
        • Liu S.
        • Pjetursson B.E.
        A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses.
        Clin Oral Implants Res. 2018; 29: 184-198
        • Kajima Y.
        • Takaichi A.
        • Nakamoto T.
        • Kimura T.
        • Kittikundecha N.
        • Tsutsumi Y.
        • et al.
        Effect of adding support structures for overhanging part on fatigue strength in selective laser melting.
        J Mech Behav Biomed Mater. 2018; 78: 1-9
        • Tholey M.J.
        • Swain M.V.
        • Thiel N.
        Thermal gradients and residual stresses in veneered Y-TZP frameworks.
        Dent Mater J. 2011; 27: 1102-1110
        • Tan J.P.
        • Sederstrom D.
        • Polansky J.R.
        • McLaren E.A.
        • White S.N.
        The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia.
        J Prosthet Dent. 2012; 107: 163-169
        • Tang Y.L.
        • Kim J.-H.
        • Shim J.-S.
        • Kim S.
        The effect of different cooling rates and coping thicknesses on the failure load of zirconia-ceramic crowns after fatigue loading.
        J Adv Prosthodont. 2017; 9: 152-158
        • Lu H.
        • Lee Y.K.
        • Oguri M.
        • Powers J.M.
        Properties of a dental resin composite with a spherical Inorganic filler.
        Oper Dent. 2006; 31: 734-740
        • Blackham J.T.
        • Vandewalle K.S.
        • Lien W.
        Properties of hybrid resin composite systems containing prepolymerized filler particles.
        Oper Dent. 2009; 34: 697-702
        • Shimoe S.
        • Tanoue N.
        • Kusano K.
        • Okazaki M.
        • Satoda T.
        Influence of air-abrasion and subsequent heat treatment on bonding between zirconia framework material and indirect composites.
        Dent Mater J. 2012; 31: 751-757
        • Kondo T.
        • Komine F.
        • Honda J.
        • Takata H.
        • Moriya Y.
        Effect of veneering materials on fracture loads of implant-supported zirconia molar fixed dental prostheses.
        J Prosthodont Res. 2018; 63: 140-144
        • Blatz M.B.
        • Sadan A.
        • Kern M.
        Resin-ceramic bonding: a review of the literature.
        J Prosthet Dent. 2003; 89: 268-274
        • Chen L.
        • Suh B.I.
        Bonding of resin materials to all-ceramics: a review.
        Current Research in Dentistry. 2012; 3: 7-17
        • Fushiki R.
        • Komine F.
        • Kimura F.
        • Kusaba K.
        • Kondo T.
        • Moriya Y.
        • et al.
        Bond strengths between gingiva-colored layering resin composite and zirconia frameworks coated with feldspathic porcelain.
        Dent Mater J. 2019; 38: 547-554
        • Akgungor G.
        • Sen D.
        • Aydin M.
        Influence of different surface treatments on the short-term bond strength and durability between a zirconia post and a composite resin core material.
        J Prosthet Dent. 2008; 99: 388-399
        • Su N.
        • Yue L.
        • Liao Y.
        • Liu W.
        • Zhang H.
        • Li X.
        • et al.
        The effect of various sandblasting conditions on surface changes of dental zirconia and shear bond strength between zirconia core and indirect composite resin.
        J Adv Prosthodont. 2015; 7: 214-223
        • Tanaka R.
        • Fujishima A.
        • Shibata Y.
        • Manabe A.
        • Miyazaki T.
        Cooperation of phosphate monomer and silica modification on zirconia.
        J Dent Res. 2008; 87: 666-670
        • Imai H.
        • Koizumi H.
        • Shimoe S.
        • Hirata I.
        • Matsumura H.
        • Nikawa H.
        Effect of thione primers on adhesive bonding between an indirect composite material and Ag-Pd-Cu-Au alloy.
        Dent Mater J. 2014; 33: 681-688
        • Pilo R.
        • Kaitsas V.
        • Zinelis S.
        • Eliades G.
        Interaction of zirconia primers with yttria-stabilized zirconia surfaces.
        Dent Mater J. 2016; 32: 353-362
        • Shimoe S.
        • Hirata I.
        • Otaku M.
        • Matsumura H.
        • Kato K.
        • Satoda T.
        Formation of chemical bonds on zirconia surfaces with acidic functional monomers.
        J Oral Sci. 2018; 60: 187-193
        • Zhang Y.
        • Lawn B.R.
        • Rekow E.D.
        • Thompson V.P.
        Effect of sandblasting on the long-term performance of dental ceramics.
        J Biomed Mater Res B Appl Biomater. 2004; 71: 381-386
        • Yamaguchi H.
        • Ino S.
        • Hamano N.
        • Okada S.
        • Teranaka T.
        Examination of bond strength and mechanical properties of Y-TZP zirconia ceramics with different surface modifications.
        Dent Mater J. 2012; 31: 472-480
        • Nobuaki A.
        • Keiichi Y.
        • Takashi S.
        Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements.
        J Appl Oral Sci. 2015; 23: 629-636
        • Byeon S.M.
        • Jang Y.S.
        • Lee M.H.
        • Bae T.S.
        Improvement in the tensile bond strength between 3Y-TZP ceramic and enamel by surface treatments.
        Materials (Basel). 2016; 9: 702
        • Akazawa N.
        • Koizumi H.
        • Nogawa H.
        • Nakayama D.
        • Kodaira A.
        • Matsumura H.
        Effect of mechanochemical surface preparation on bonding to zirconia of a tri-n-butylborane initiated resin.
        Dent Mater J. 2017; 36: 19-26
        • Thurmond J.W.
        • Barkmeier W.W.
        • Wilwerding T.M.
        Effect of porcelain surface treatments on bond strengths of composite resin bonded to porcelain.
        J Prosthet Dent. 1994; 72: 355-359
        • Shahverdi S.
        • Canay S.
        • Sûahin E.
        • Bilge A.
        Effects of different surface treatment methods on the bond strength of composite resin to porcelain.
        J Oral Rehabil. 1998; 25: 699-705
        • Tsuo Y.
        • Yoshida K.
        • Atsuta M.
        Effects of alumina-blasting and adhesive primers on bonding between resin luting agent and zirconia ceramics.
        Dent Mater J. 2006; 25: 669-674
        • Wolfart M.
        • Lehmann F.
        • Wolfart S.
        • Kern M.
        Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods.
        Dent Mater J. 2007; 23: 45-50
        • Kern M.
        • Barloi A.
        • Yang B.
        Surface conditioning Influences zirconia ceramic bonding.
        J Dent Res. 2009; 88: 817-822
        • Yang B.
        • Barloi A.
        • Kern M.
        Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin.
        Dent Mater J. 2010; 26: 44-50
        • Dias de Souza G.M.
        • Thompson V.P.
        • Braga R.R.
        Effect of metal primers on microtensile bond strength between zirconia and resin cements.
        J Prosthet Dent. 2011; 105: 296-303
        • Komine F.
        • Fushiki R.
        • Koizuka M.
        • Taguchi K.
        • Kamio S.
        • Matsumura H.
        Effect of surface treatment on bond strength between an indirect composite material and a zirconia framework.
        J Oral Sci. 2012; 54: 39-46