Advertisement
Journal of Prosthetic Dentistry

Effect of thermocycling on the surface texture and release of titanium particles from titanium alloy (Ti6Al4V) plates and dental implants: An in vitro study

Published:February 07, 2020DOI:https://doi.org/10.1016/j.prosdent.2019.11.013

      Abstract

      Statement of problem

      The release of titanium (Ti) particles from the surface of endosseous dental implants is not well understood.

      Purpose

      The purpose of this in vitro study was to evaluate the effect of thermocycling on the surface texture and release of Ti particles from the surface of dental implants.

      Material and methods

      Three MSI dental implants and 3 Ti alloy (Ti6Al4V) plates were divided into 6 subgroups (n=3). Specimens in each group were subjected to 0 (control group), 100, 200, 500, 1000, and 2000 thermocycles. After each cycling process, artificial saliva was collected, and the concentrations of released Ti particles were quantified by inductively coupled plasma-mass spectrophotometry (ICP-MS). The surfaces of the dental implants and Ti plates were evaluated before and after thermocycling by scanning electron microscopy (SEM), and SEM images were analyzed by using the ImageJ software program. Data were analyzed by mixed-model ANOVA and post hoc Tukey tests (α=.05).

      Results

      The greatest Ti release was seen after 2000 thermocycles. After increasing the number of cycles, additional Ti particles were released. SEM images of the surfaces of the dental implants and Ti plates displayed significant changes in surface texture.

      Conclusions

      Thermocycling continuously removed the protective TiO2 layer on the surface of dental implants, resulting in the release of Ti particles. The surface treatment and texture did not affect the release of Ti particles.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Saghiri M.A.
        • Orangi J.
        • Asatourian A.
        • Sorenson C.M.
        • Sheibani N.
        Functional role of inorganic trace elements in angiogenesis part III:(Ti, Li, Ce, As, Hg, Va, Nb and Pb).
        Crit Rev Oncol Hematol. 2016; 98: 290-301
        • Saghiri M.A.
        • Asatourian A.
        • Orangi J.
        • Sorenson C.M.
        • Sheibani N.
        Functional role of inorganic trace elements in angiogenesis—Part I: N, Fe, Se, P, Au, and Ca.
        Crit Rev Oncol Hematol. 2015; 96: 129-142
        • Saghiri M.A.
        • Asatourian A.
        • Orangi J.
        • Sorenson C.M.
        • Sheibani N.
        Functional role of inorganic trace elements in angiogenesis—Part II: Cr, Si, Zn, Cu, and S.
        Crit Rev Oncol Hematol. 2015; 96: 143-155
        • Saghiri M.A.
        • Asatourian A.
        • Garcia-Godoy F.
        • Sheibani N.
        The role of angiogenesis in implant dentistry part I: review of titanium alloys, surface characteristics and treatments.
        Med Oral Patol Oral Cir Bucal. 2016; 21: e514-e525
        • Saghiri M.A.
        • Asatourian A.
        • Garcia-Godoy F.
        • Sheibani N.
        The role of angiogenesis in implant dentistry part II: the effect of bone-grafting and barrier membrane materials on angiogenesis.
        Med Oral Patol Oral Cir Bucal. 2016; 21: e526-e537
        • Okazaki Y.
        Effect of friction on anodic polarization properties of metallic biomaterials.
        Biomaterials. 2002; 23: 2071-2077
        • Pioletti D.P.
        • Takei H.
        • Lin T.
        • Van Landuyt P.
        • Ma Q.J.
        • Kwon S.Y.
        • et al.
        The effects of calcium phosphate cement particles on osteoblast functions.
        Biomaterials. 2000; 21: 1103-1114
        • Hallab N.J.
        • Jacobs J.J.
        Biologic effects of implant debris.
        Bull NYU Hosp Jt Dis. 2009; 67: 182-188
        • St. Pierre C.A.
        • Chan M.
        • Iwakura Y.
        • Ayers D.C.
        • Kurt-Jones E.A.
        • Finberg R.W.
        Periprosthetic osteolysis: characterizing the innate immune response to titanium wear particles.
        J Orthop Res. 2010; 28: 1418-1424
        • Drnovšek N.
        • Rade K.
        • Milačič R.
        • Štrancar J.
        • Novak S.
        The properties of bioactive TiO2 coatings on Ti-based implants.
        Surf Coat Technol. 2012; 209: 177-183
        • Aragon P.
        • Hulbert S.
        Corrosion of Ti-6Al-4V in simulated body fluids and bovine plasma.
        J Biomed Mater Res. 1972; 6: 155-164
        • Walker P.R.
        • LeBlanc J.
        • Sikorska M.
        Effects of aluminum and other cations on the structure of brain and liver chromatin.
        Biochemistry. 1989; 28: 3911-3915
        • Saghiri M.A.
        • Asatourian A.
        • Sorenson C.M.
        • Sheibani N.
        Mice dental pulp and periodontal ligament endothelial cells exhibit different proangiogenic properties.
        Tissue Cell. 2018; 50: 31-36
        • Schliephake H.
        • Reiss G.
        • Urban R.
        • Neukam F.
        • Guckel S.
        Metal release from titanium fixtures during placement in the mandible: an experimental study.
        Int J Oral Maxillofac Implants. 1993; 8: 127-143
        • Rogers S.
        • Howie D.
        • Graves S.
        • Pearcy M.
        • Haynes D.
        In vitro human monocyte response to wear particles of titanium alloy containing vanadium or niobium.
        J Bone Joint Surg Br. 1997; 79: 311-315
        • Maloney W.J.
        • James R.E.
        • Smith R.L.
        Human macrophage response to retrieved titanium alloy particles in vitro.
        Clin Orthop Relat Res. 1996; : 268-278
        • Bauer T.W.
        Particles and periimplant bone resorption.
        Clin Orthop Relat Res. 2002; 405: 138-143
        • Morresi A.L.
        • D'Amario M.
        • Capogreco M.
        • Gatto R.
        • Marzo G.
        • D'Arcangelo C.
        • et al.
        Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review.
        J Mech Behav Biomed Mater. 2014; 29: 295-308
        • Bitter K.
        • Meyer-Lueckel H.
        • Priehn K.
        • Kanjuparambil J.
        • Neumann K.
        • Kielbassa A.
        Effects of luting agent and thermocycling on bond strengths to root canal dentine.
        Int Endod J. 2006; 39: 809-818
        • Lüthy H.
        • Loeffel O.
        • Hammerle C.H.
        Effect of thermocycling on bond strength of luting cements to zirconia ceramic.
        Dent Mater. 2006; 22: 195-200
        • Helvatjoglu-Antoniades M.
        • Koliniotou-Kubia E.
        • Dionyssopoulos P.
        The effect of thermal cycling on the bovine dentine shear bond strength of current adhesive systems.
        J Oral Rehabil. 2004; 31: 911-917
        • Korkmaz Y.
        • Gurgan S.
        • Firat E.
        • Nathanson D.
        Effect of adhesives and thermocycling on the shear bond strength of a nano-composite to coronal and root dentin.
        Oper Dent. 2010; 35: 522-529
        • Saghiri M.A.
        • Asatourian A.
        • Garcia-Godoy F.
        • Gutmann J.L.
        • Sheibani N.
        The impact of thermocycling process on the dislodgement force of different endodontic cements.
        Biomed Res Int. 2013; 2013: 1-6
        • Yeo I.-S.
        • Lee J.-H.
        • Kang T.-J.
        • Kim S.-K.
        • Heo S.-J.
        • Koak J.-Y.
        • et al.
        The effect of abutment screw length on screw loosening in dental implants with external abutment connections after thermocycling.
        Int J Oral Maxillofac Implants. 2014; 29: 59-62
        • Dimića I.D.
        • Cvijović-Alagićb I.L.
        • Rakinc M.B.
        • Perić-Grujićc A.A.
        • Rakinc M.P.
        • Bugarskic B.M.
        • et al.
        Effect of the pH of artificial saliva on ion release from commercially pure titanium.
        Acta Period Technol. 2013; 44: 207-215
        • Wang J.
        • Zhou G.
        • Chen C.
        • Yu H.
        • Wang T.
        • Ma Y.
        • et al.
        Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration.
        Toxicol Lett. 2007; 168: 176-185
        • Saghiri M.A.
        • Asgar K.
        • Daliri M.
        • Lotfi M.
        • Delvarani A.
        • Mehrvarzfar P.
        • et al.
        Morphological behavior and attachment of p19 neural cells to root end filling materials.
        Scanning. 2010; 32: 369-374
        • Saghiri M.A.
        • García-Godoy F.
        • Asgar K.
        • Lotfi M.
        The effect of Morinda Citrifolia juice as an endodontic irrigant on smear layer and microhardness of root canal dentin.
        Oral Sci Int. 2013; 10: 53-57
        • Saghiri M.A.
        • Ghasemi M.
        • Moayer A.R.
        • Sheibani N.
        • Garcia-Godoy F.
        • Asatourian A.
        • et al.
        A novel method to evaluate the neurocompatibility of dental implants.
        Int J Oral Maxillofac Implants. 2014; 29: 41-50
        • Manivasagam G.
        • Dhinasekaran D.
        • Rajamanickam A.
        Biomedical implants: corrosion and its prevention-a review.
        Recent Pat Corros Sci. 2010; 2: 40-54
        • Lv P.
        • Xu J.
        • Yang R.
        • Zhang C.
        • Zhang F.
        • Dong S.
        • et al.
        Effect of thermocycling on the microstructure of Ti-6Al-4V alloy in simulated low earth orbit space environment.
        Sci China Mater. 2016; 59: 363-370
        • Gale M.
        • Darvell B.
        Thermal cycling procedures for laboratory testing of dental restorations.
        J Dent. 1999; 27: 89-99
        • Boere G.
        Influence of fluoride on titanium in an acidic environment measured by polarization resistance technique.
        J Appl Biomater. 1995; 6: 283-288
        • Noguti J.
        • de Oliveira F.
        • Peres R.C.
        • Renno A.C.M.
        • Ribeiro D.A.
        The role of fluoride on the process of titanium corrosion in oral cavity.
        Biometals. 2012; 25: 859-862
        • Pettersson M.
        • Pettersson J.
        • Molin Thorén M.
        • Johansson A.
        Release of titanium after insertion of dental implants with different surface characteristics–an ex vivo animal study.
        Acta Biomater Odontol Scand. 2017; 3: 63-73
        • Saghiri M.A.
        • Saghiri A.M.
        In Memoriam: Dr. Hajar Afsar Lajevardi MD, MSc, MS (1955-2015).
        Iran J Pediatr. 2017; 27: 1