Journal of Prosthetic Dentistry
Research and Education| Volume 123, ISSUE 6, P874.e1-874.e7, June 2020

Download started.


Digital evaluation of laser scanning speed effects on the intaglio surface adaptation of laser-sintered metal frameworks


      Statement of problem

      Laser sintering has several processing parameters, typically under the control of dental laboratory technicians. Laser scan speed is an important parameter, which has a significant effect on manufacturing time but may also affect the adaptation of restorations. However, limited information is available regarding its impact.


      The purpose of this in vitro study was to evaluate the intaglio surface adaptation of laser-sintered cobalt-chromium single-crown frameworks sintered at laser scanning speeds of 1, 3, and 6 m/s.

      Material and methods

      A master bronze metal die was prepared and scanned by using a laboratory scanner to fabricate the metal frameworks for 4 groups (n=10). In group C, the frameworks were fabricated by using the lost-wax method (control). In group L1, L3, and L6, the frameworks were fabricated by using direct metal laser melting (DMLM) at laser scanning speeds of 1, 3, and 6 m/s. After fabrication, 3 scanning data sets were used to evaluate the intaglio surface adaptation: the master die, the intaglio surface of each metal framework, and each metal framework seated on the master die. The intaglio surface adaptation of the metal frameworks was evaluated by using a metrology software program. The data were statistically analyzed by using a 1-way ANOVA, the Tukey honestly significant difference test, and the Tamhane T2 test (α=.05).


      The highest mean intaglio surface discrepancy value was obtained from group L6, and this was significantly different from the other 3 groups (P<.001). No significant intaglio surface discrepancy differences were found among the other groups.


      The amount of intaglio surface discrepancy increased when the laser scanning speed reached 6 m/s.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Johnson R.
        • Verrett R.
        • Haney S.
        • Mansueto M.
        • Challa S.
        Marginal gap of milled versus cast gold restorations.
        J Prosthodont. 2017; 26: 56-63
        • Park J.M.
        • Hong Y.S.
        • Park E.J.
        • Heo S.J.
        • Oh N.
        Clinical evaluations of cast gold alloy, machinable zirconia, and semiprecious alloy crowns: a multicenter study.
        J Prosthet Dent. 2016; 115: 684-691
        • Sulaiman F.
        • Chai J.
        • Wozniak W.T.
        A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns.
        Int J Prosthodont. 1997; 10: 478-484
        • Willer J.
        • Rossbach A.
        • Weber H.P.
        Computer-assisted milling of dental restorations using a new CAD/CAM data acquisition system.
        J Prosthet Dent. 1998; 80: 346-353
        • Kaleli N.
        • Ural Ç.
        • Özköylü G.
        • Duran İ.
        Effect of layer thickness on the marginal and internal adaptation of laser-sintered metal frameworks.
        J Prosthet Dent. 2019; 121: 922-928
        • Bindl A.
        • Mörmann W.
        Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations.
        J Oral Rehabil. 2005; 32: 441-447
        • Kokubo Y.
        • Tsumita M.
        • Kano T.
        • Sakurai S.
        • Fukushima S.
        Clinical marginal and internal gaps of zirconia all-ceramic crowns.
        J Prosthodont Res. 2011; 55: 40-43
        • Beuer F.
        • Aggstaller H.
        • Edelhoff D.
        • Gernet W.
        • Sorensen J.
        Marginal and internal fits of fixed dental prostheses zirconia retainers.
        Dent Mater. 2009; 25: 94-102
        • Conrad H.J.
        • Seong W.-J.
        • Pesun I.J.
        Current ceramic materials and systems with clinical recommendations: a systematic review.
        J Prosthet Dent. 2007; 98: 389-404
        • Kocaağaoğlu H.
        • Kılınç H.İ.
        • Albayrak H.
        • Kara M.
        In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies.
        J Prosthet Dent. 2016; 116: 368-374
        • Yeo I.S.
        • Yang J.H.
        • Lee J.B.
        In vitro marginal fit of three all-ceramic crown systems.
        J Prosthet Dent. 2003; 90: 459-464
        • Kaleli N.
        • Saraç D.
        Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods.
        J Prosthet Dent. 2017; 117: 656-661
        • Groten M.
        • Girthofer S.
        • Pröbster L.
        Marginal fit consistency of copy-milled all-ceramic crowns during fabrication by light and scanning electron microscopic analysis in vitro.
        J Oral Rehabil. 1997; 24: 871-881
        • Kim K.B.
        • Kim J.H.
        • Kim W.C.
        • Kim H.Y.
        • Kim J.H.
        Evaluation of the marginal and internal gap of metal-ceramic crown fabricated with a selective laser sintering technology: two-and three-dimensional replica techniques.
        J Adv Prosthodont. 2013; 5: 179-186
        • Kosyfaki P.
        • del Pilar Pinilla Martín M.
        • Strub J.R.
        Relationship between crowns and the periodontium: a literature update.
        Quintessence Int. 2010; 41: 109-126
        • Lopez-Suarez C.
        • Gonzalo E.
        • Pelaez J.
        • Serrano B.
        • Suarez M.J.
        Marginal vertical discrepancies of monolithic and veneered zirconia and metal-ceramic three-unit posterior fixed dental prostheses.
        Int J Prosthodont. 2016; 29: 256-258
        • Reich S.
        • Wichmann M.
        • Nkenke E.
        • Proeschel P.
        Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems.
        Eur J Oral Sci. 2005; 113: 174-179
        • Wolfart S.
        • Wegner S.M.
        • Al-Halabi A.
        • Kern M.
        Clinical evaluation of marginal fit of a new experimental all-ceramic system before and after cementation.
        Int J Prosthodont. 2003; 16: 587-592
        • Hickel R.
        • Dasch W.
        • Mehl A.
        • Kremers L.
        CAD/CAM–Fillings of the future?.
        Int Dent J. 1997; 47: 247-258
        • Bagheri R.
        Film thickness and flow properties of resin-based cements at different temperatures.
        J Dent (Shiraz). 2013; 14: 57
        • Kious A.R.
        • Roberts H.W.
        • Brackett W.W.
        Film thicknesses of recently introduced luting cements.
        J Prosthet Dent. 2009; 101: 189-192
        • Wu J.C.
        • Wilson P.R.
        Optimal cement space for resin luting cements.
        Int J Prosthodont. 1994; 7: 209-215
        • Nawafleh N.A.
        • Mack F.
        • Evans J.
        • Mackay J.
        • Hatamleh M.M.
        Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: a literature review.
        J Prosthodont. 2013; 22: 419-428
        • Sorensen J.A.
        A standardized method for determination of crown margin fidelity.
        J Prosthet Dent. 1990; 64: 18-24
        • Kim E.H.
        • Lee D.H.
        • Kwon S.M.
        • Kwon T.Y.
        A microcomputed tomography evaluation of the marginal fit of cobalt-chromium alloy copings fabricated by new manufacturing techniques and alloy systems.
        J Prosthet Dent. 2017; 117: 393-399
        • Kim J.H.
        • Jeong J.H.
        • Lee J.H.
        • Cho H.W.
        Fit of lithium disilicate crowns fabricated from conventional and digital impressions assessed with micro-CT.
        J Prosthet Dent. 2016; 116: 551-557
        • Neves F.D.
        • Prado C.J.
        • Prudente M.S.
        • Carneiro T.A.
        • Zancopé K.
        • Davi L.R.
        • et al.
        Micro-computed tomography evaluation of marginal fit of lithium disilicate crowns fabricated by using chairside CAD/CAM systems or the heat-pressing technique.
        J Prosthet Dent. 2014; 112: 1134-1140
        • Kane L.M.
        • Chronaios D.
        • Sierraalta M.
        • George F.M.
        Marginal and internal adaptation of milled cobalt-chromium copings.
        J Prosthet Dent. 2015; 114: 680-685
        • Lee D.H.
        Digital approach to assessing the 3-dimensional misfit of fixed dental prostheses.
        J Prosthet Dent. 2016; 116: 836-839
        • Liang S.
        • Yuan F.
        • Luo X.
        • Yu Z.
        • Tang Z.
        Digital evaluation of absolute marginal discrepancy: a comparison of ceramic crowns fabricated with conventional and digital techniques.
        J Prosthet Dent. 2018; 120: 525-529
        • Mai H.N.
        • Lee K.E.
        • Ha J.H.
        • Lee D.H.
        Effects of image and education on the precision of the measurement method for evaluating prosthesis misfit.
        J Prosthet Dent. 2018; 119: 600-605
        • Yilmaz B.
        • Kale E.
        • Johnston W.M.
        Marginal discrepancy of CAD-CAM complete-arch fixed implant-supported frameworks.
        J Prosthet Dent. 2018; 120: 65-70
        • O’Toole S.
        • Osnes C.
        • Bartlett D.
        • Keeling A.
        Investigation into the accuracy and measurement methods of sequential 3D dental scan alignment.
        Dent Mater. 2019; 35: 495-500
        • Korkmaz T.
        • Asar V.
        Comparative evaluation of bond strength of various metal–ceramic restorations.
        Mater Des. 2009; 30: 445-451
        • Lombardo G.H.
        • Nishioka R.S.
        • Souza R.O.
        • Michida S.M.
        • Kojima A.N.
        • Mesquita A.M.
        • et al.
        Influence of surface treatment on the shear bond strength of ceramics fused to cobalt-chromium.
        J Prosthodont. 2010; 19: 103-111
        • Kaleli N.
        • Saraç D.
        Comparison of porcelain bond strength of different metal frameworks prepared by using conventional and recently introduced fabrication methods.
        J Prosthet Dent. 2017; 118: 76-82
        • Örtorp A.
        • Jönsson D.
        • Mouhsen A.
        • von Steyern P.V.
        The fit of cobalt–chromium three-unit fixed dental prostheses fabricated with four different techniques: a comparative in vitro study.
        Dent Mater. 2011; 27: 356-363
        • Strub J.R.
        • Rekow E.D.
        • Witkowski S.
        Computer-aided design and fabrication of dental restorations: current systems and future possibilities.
        J Am Dent Assoc. 2006; 137: 1289-1296
        • Ekren O.
        • Ozkomur A.
        • Ucar Y.
        Effect of layered manufacturing techniques, alloy powders, and layer thickness on metal-ceramic bond strength.
        J Prosthet Dent. 2018; 119: 481-487
        • Van Noort R.
        The future of dental devices is digital.
        Dent Mater. 2012; 28: 3-12
        • Santos E.C.
        • Shiomi M.
        • Osakada K.
        • Laoui T.
        Rapid manufacturing of metal components by laser forming.
        Int J Mach Tool Manuf. 2006; 46: 1459-1468
        • Sun J.
        • Zhang F.Q.
        The application of rapid prototyping in prosthodontics.
        J Prosthodont. 2012; 21: 641-644
        • Harish V.
        • Mohamed Ali S.
        • Jagadesan N.
        • Mohamed Ifthikar S.S.
        • Debasish Basak F.H.
        Evaluation of internal and marginal fit of two metal ceramic system–in vitro study.
        J Clin Diagn Res. 2014; 8: ZC53-ZC56
        • Gu D.
        • Shen Y.
        Balling phenomena in direct laser sintering of stainless steel powder: metallurgical mechanisms and control methods.
        Mater Des. 2009; 30: 2903-2910
        • Lu Y.
        • Gan Y.
        • Lin J.
        • Guo S.
        • Wu S.
        • Lin J.
        Effect of laser speeds on the mechanical property and corrosion resistance of CoCrW alloy fabricated by SLM.
        Rapid Prototyp J. 2017; 23: 28-33
        • Senthilkumaran K.
        • Pandey P.M.
        • Rao P.
        Influence of building strategies on the accuracy of parts in selective laser sintering.
        Mater Des. 2009; 30: 2946-2954
        • Vandenbroucke B.
        • Kruth J.P.
        Selective laser melting of biocompatible metals for rapid manufacturing of medical parts.
        Rapid Prototyp J. 2007; 13: 196-203
        • Wang R.J.
        • Wang L.
        • Zhao L.
        • Liu Z.
        Influence of process parameters on part shrinkage in SLS.
        Int J Adv Manuf Technol. 2007; 33: 498-504
        • Yap C.Y.
        • Chua C.K.
        • Dong Z.L.
        • Liu Z.H.
        • Zhang D.Q.
        • Loh L.E.
        • et al.
        Review of selective laser melting: materials and applications.
        Appl Phys Rev. 2015; 2: 041101
        • Zhang B.
        • Liao H.
        • Coddet C.
        Effects of processing parameters on properties of selective laser melting Mg–9% Al powder mixture.
        Mater Des. 2012; 34: 753-758
        • Zhang L.
        • Klemm D.
        • Eckert J.
        • Hao Y.
        • Sercombe T.
        Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy.
        Scripta Mater. 2011; 65: 21-24
        • International Organization for Standardization
        ISO 9917-1. Dentistry – Water-based cements - Part 1.
        International Organization for Standardization, Geneva2007 (Available at: ISO Store Order: OP-352220 (Date: 2019-03-03))
        • International Organization for Standardization
        ISO 4049. Dentistry – Polymer-based restorative materials.
        International Organization for Standardization, Geneva2009 (Available at: ISO Store Order: OP-269078 (Date: 2018-02-17))
        • Kumar S.
        Selective laser sintering: a qualitative and objective approach.
        JOM. 2003; 55: 43-47