Abstract
Statement of problem
The process of manufacturing stereolithographic surgical guides for static computer-guided
implant placement involves a series of steps. Errors can be incorporated in various
forms and at various stages of manufacturing these guides. Errors introduced during
this process have not been fully investigated.
Purpose
The purpose of this in vitro study was to assess the errors introduced during the
manufacture of stereolithographic surgical guides generated from cone beam computed
tomography (CBCT) and digital scans by using a virtual implant planning software.
Material and methods
Ten stereolithographic surgical guides with the associated standard tessellation language
(STL) files of their virtual design were used in this study. The STL files of the
virtual design and the scans of the stereolithographic surgical guides were superimposed.
Linear deviation at the center of the sleeve top and sleeve base and the angular deviation
at the center of the sleeve were measured.
Results
The minimum and maximum linear deviation at the center of the sleeve top and the sleeve
base was found to be 0 and 40 μm, with less linear deviation observed at the center
of the sleeve top (mean ±standard deviation 18 ±7 μm) than at the center of the sleeve
base (20 ±7 μm). The minimum and maximum angular deviation at the center of the sleeve
was found to be 0 degrees and 5.9 degrees respectively, with a mean ± standard deviation
of 1.36 ±0.74 degrees.
Conclusions
Errors were found in the sleeve position between the virtual design and the stereolithographically
manufactured surgical guide. This error may introduce errors in the final implant
position.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Prosthetic DentistryAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Surgical guide for dental implant placement.J Prosthet Dent. 2000; 83: 248-251
- Computer technology applications in surgical implant dentistry: a systematic review.Int J Oral Maxillofac Implants. 2014; 29: 25-42
- Implant surgical guide fabrication for partially edentulous patients.J Prosthet Dent. 2005; 93: 294-297
- Fabrication of imaging and surgical guides for dental implants.J Prosthet Dent. 2001; 85: 504-508
- Use of diagnostic and surgical stent: a simplified approach for implant placement.J Indian Prosthodont Soc. 2010; 10: 234-239
- Reliability of implant placement with stereolithographic surgical guides generated from computed tomography: clinical data from 94 implants.J Periodontol. 2008; 79: 1339-1345
- Evaluation of the accuracy of three different computer-aided surgery systems in dental implantology: optical tracking vs. stereolithographic splint systems.Clin Oral Implants Res. 2008; 19: 709-716
- Accuracy of two stereolithographic guide systems for computer-aided implant placement: a computed tomography-based clinical comparative study.J Periodontol. 2010; 81: 43-51
- Accuracy assessment of cone beam computed tomography-derived laboratory-based surgical templates on partially edentulous patients.Clin Oral Implants Res. 2012; 23: 137-143
- Advantages and limitations of implant surgery with CAD/CAM surgical guides: A literature review.J Clin Exp Dent. 2020; 12: 409-417
- Clinical accuracy of 3 different types of computed tomography-derived stereolithographic surgical guides in implant placement.J Oral Maxillofac Surg. 2009; 67: 394-401
- Implant placement accuracy when using stereolithographic template as a surgical guide: preliminary results.Implant Dent. 2009; 18: 46-56
- Clinical application of stereolithographic surgical guides for implant placement: preliminary results.J Periodontol. 2005; 76: 503-507
- Accuracy and complications using computer-designed stereolithographic surgical guides for oral rehabilitation by means of dental implants: a review of the literature.Clin Implant Dent Relat Res. 2012; 14: 321-335
- Accuracy of templates for navigated implantation made by rapid prototyping with DICOM datasets of cone beam computer tomography (CBCT).Clin Oral Investig. 2011; 15: 1001-1006
- Congruency of stereo lithographically produced surgical guide bases made from the same CBCT file: a pilot study.Clin Implant Dent Relat Res. 2013; 15: 531-537
- Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates.J Prosthet Dent. 2019; 122: 309-314
- Accuracy of surgical guides from 2 different desktop three dimensional printers for computed tomography-guided surgery.J Prosthet Dent. 2019; 121: 498-503
- Comparison of the accuracy of implant position using surgical guides fabricated by additive and subtractive techniques.J Prosthodont. 2020; 29: 534-541
- Accuracy of three different types of stereolithographic surgical guide in implant placement: an in vitro study.J Prosthet Dent. 2012; 108: 181-188
- Polymers for 3D printing and customized additive manufacturing.Chem Rev. 2017; 117: 10212-10290
- 3D printing with polymers: Challenges among expanding options and opportunities.Dent Mater. 2016; 32: 54-64
- Technical accuracy of printed surgical templates for guided implant surgery with the coDiagnostiX ™ software.Clin Implant Dent Relat Res. 2015; 17: 177-182
- Digital vs. conventional full-arch implant impressions: a comparative study.Clin Oral Implants Res. 2017; 28: 1360-1367
- Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner.Am J Orthod Dentofacial Orthop. 2013; 144: 471-478
- Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience.J Prosthet Dent. 2018; 119: 225-232
Article info
Publication history
Published online: February 11, 2021
Footnotes
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Identification
Copyright
© 2021 by the Editorial Council for the Journal of Prosthetic Dentistry.