Advertisement
Journal of Prosthetic Dentistry

Effect of guide sleeve material, region, diameter, and number of times drills were used on the material loss from sleeves and drills used for surgical guides: An in vitro study

      Abstract

      Statement of problem

      How material loss from sleeves and drills is affected when different guide sleeve materials and different sizes of implant drills are used for different regions of surgical guides is unclear.

      Purpose

      The purpose of this in vitro study was to compare the amount of material loss from different guide sleeves (zirconia and cobalt-chromium) and drills of different diameters during osteotomy preparation in different regions.

      Material and methods

      Three tooth-supported surgical guides with sleeve holes positioned in the first premolar and second molar sites were prepared. Guide sleeves (Ø 2.20 mm, 3.40 mm, and 4.05 mm) were milled from zirconia (n=60) and cobalt-chromium (n=60) blocks. A total of 12 titanium nitride-coated stainless steel twisted drills (n=6 per sleeve material) of different diameters (Ø 2.00, 3.20, 3.85 mm) were used with corresponding sleeves during the drilling. The weight loss from the drills and the volume loss from the guide sleeves after drilling were analyzed by using multiple linear mixed effect models (α=.05).

      Results

      According to the 4-way ANOVA for volume loss from sleeves, no significant interaction was found among the 4 main effects (number of times a drill was used, region, diameter, and material), but interactions between the number of times a drill was used and diameter (P=.001) and between the number of times the drill was used and material were significant (P<.001). For weight loss from the drills, a significant interaction was detected between the number of times the drill was used and diameter (P=.024).

      Conclusions

      Less sleeve material was lost when zirconia sleeves were used. All sleeves had more material loss in the molar region than in the premolar region. The diameter had varying effects on the amount of material loss from drills and sleeves. The sleeve material and the region did not affect the material loss from drills.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jung R.E.
        • Schneider D.
        • Ganeles J.
        • Wismeijer D.
        • Zwahlen M.
        • Hammerle C.H.F.
        • et al.
        Computer technology applications in surgical implant dentistry: a systematic review.
        Int J Oral Maxillofac Implants. 2009; 24: 92-109
        • Joda T.
        • Derksen W.
        • Wittneben J.G.
        • Kuehl S.
        Static computer-aided implant surgery (s-CAIS) analysing patient-reported outcome measures (PROMs), economics and surgical complications: a systematic review.
        Clin Oral Implants Res. 2018; 29: 359-373
        • Maló P.
        • de Araújo Nobre M.
        • Lopes A.
        The use of computer-guided flapless implant surgery and four implants placed in immediate function to support a fixed denture: preliminary results after a mean follow-up period of thirteen months.
        J Prosthet Dent. 2007; 97: 26-34
        • Ozan O.
        • Turkyilmaz I.
        • Yilmaz B.
        A preliminary report of patients treated with early loaded implants using computerized tomography-guided surgical stents: flapless versus conventional flapped surgery.
        J Oral Rehabil. 2007; 34: 835-840
        • Ozan O.
        • Seker E.
        • Kurtulmus-Yilmaz S.
        • Ersoy A.E.
        Clinical application of stereolithographic surgical guide with a handpiece guidance apparatus: a case report.
        J Oral Implantol. 2012; 38: 603-609
        • Ozan O.
        • Orhan K.
        • Turkyilmaz I.
        Correlation between bone density and angular deviation of implants placed using CT-generated surgical guides.
        J Craniofac Surg. 2011; 22: 1755-1761
        • Tahmaseb A.
        • Wismeijer D.
        • Coucke W.
        • Derksen W.
        Computer technology applications in surgical implant dentistry: a systematic review.
        Int J Oral Maxillofac Implants. 2014; 29: 25-42
        • Al Yafi F.
        • Camenisch B.
        • Al-Sabbagh M.
        Is digital guided implant surgery accurate and reliable?.
        Dent Clin North Am. 2019; 63: 381-397
        • Koop R.
        • Vercruyssen M.
        • Vermeulen K.
        • Quirynen M.
        Tolerance within the sleeve inserts of different surgical guides for guided implant surgery.
        Clin Oral Implants Res. 2013; 24: 630-634
        • Laederach V.
        • Mukaddam K.
        • Payer M.
        • Filippi A.
        • Kühl S.
        Deviations of different systems for guided implant surgery.
        Clin Oral Implants Res. 2017; 28: 1147-1151
        • Rosenfeld A.L.
        • Mandelaris G.A.
        • Tardieu P.B.
        Prosthetically directed implant placement using computer software to ensure precise placement and predictable prosthetic outcomes. Part 3: stereolithographic drilling guides that do not require bone exposure and the immediate delivery of teeth.
        Int J Periodontics Restorative Dent. 2006; 26: 493-499
        • Mandelaris G.A.
        • Rosenfeld A.L.
        • King S.D.
        • Nevins M.L.
        Computer-guided implant dentistry for precise implant placement: combining specialized stereolithographically generated drilling guides and surgical implant instrumentation.
        Int J Periodontics Restorative Dent. 2010; 30: 275-281
        • Fortin T.
        • Bosson J.L.
        • Isidori M.
        • Blanchet E.
        Effect of flapless surgery on pain experienced in implant placement using an image-guided system.
        Int J Oral Maxillofac Implants. 2006; 21: 298-304
        • Lopes A.
        • Malo P.
        • de Araujo Nobre M.
        • Sanchez-Fernandez E.
        • Gravito I.
        The NobelGuide All-on-4 treatment concept for rehabilitation of edentulous jaws: a retrospective report on the 7-years clinical and 5-years radiographic outcomes.
        Clin Implant Dent Relat Res. 2017; 19: 233-244
        • Misir A.F.
        • Sumer M.
        • Yenisey M.
        • Ergioglu E.
        Effect of surgical drill guide on heat generated from implant drilling.
        J Oral Maxillofac Surg. 2009; 67: 2663-2668
        • Migliorati M.
        • Amorfini L.
        • Signori A.
        • Barberis F.
        • Biavati A.S.
        • Benedicenti S.
        Internal bone temperature change during guided surgery preparations for dental implants: an in vitro study.
        Int J Oral Maxillofac Implants. 2013; 28: 1464-1469
        • Markovic A.
        • Lazic Z.
        • Misic T.
        • Scepanovic M.
        • Todorovic A.
        • Thakare K.
        • et al.
        Effect of surgical drill guide and irrigans temperature on thermal bone changes during drilling implant sites-thermographic analysis on bovine ribs.
        Vojnosanit Pregl. 2016; 73: 744-750
        • dos Santos P.L.
        • Queiroz T.P.
        • Margonar R.
        • de Souza Carvalho A.C.G.
        • Betoni Jr., W.
        • Rezende R.R.R.
        • et al.
        Evaluation of bone heating, drill deformation, and drill roughness after implant osteotomy: guided surgery and classic drilling procedure.
        Int J Oral Maxillofac Implants. 2014; 29: 51-58
        • Ercoli C.
        • Funkenbusch P.D.
        • Lee H.J.
        • Moss M.E.
        • Graser G.N.
        The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: A study of drill durability.
        Int J Oral Maxillofac Implants. 2004; 19: 335-349
        • Hochscheidt C.J.
        • Shimizu R.H.
        • Andrighetto A.R.
        • Pierezan R.
        • Thomé G.
        • Salatti R.
        Comparative analysis of cutting efficiency and surface maintenance between different types of implant drills: An in vitro study.
        Implant Dent. 2017; 26: 723-729
        • Oliveira N.
        • Alaejos-Algarra F.
        • Mareque-Bueno J.
        • Ferres-Padro E.
        • Hernandez-Alfaro F.
        Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills.
        Clin Oral Implants Res. 2012; 23: 963-969
        • Mendes G.C.B.
        • Padovan L.E.M.
        • Ribeiro-Junior P.D.
        • Sartori E.M.
        • Valgas L.
        • Claudino M.
        Influence of implant drill materials on wear, deformation, and roughness after repeated drilling and sterilization.
        Implant Dent. 2014; 23: 188-194
        • Sumer M.
        • Misir A.F.
        • Telcioglu N.T.
        • Guler A.U.
        • Yenisey M.
        Comparison of heat generation during implant drilling using stainless steel and ceramic drills.
        J Oral Maxillofac Surg. 2011; 69: 1350-1354
        • Queiroz T.P.
        • Souza F.A.
        • Okamoto R.
        • Margonar R.
        • Pereira-Filho V.A.
        • Junior I.R.G.
        • et al.
        Evaluation of immediate bone-cell viability and of drill wear after implant osteotomies: Immunohistochemistry and scanning electron microscopy analysis.
        J Oral Maxillofac Surg. 2008; 66: 1233-1240
        • de Souza Carvalho A.C.G.
        • Queiroz T.P.
        • Okamoto R.
        • Margonar R.
        • Garcia Jr., I.R.
        • Filho O.M.
        Evaluation of bone heating, immediate bone cell viability, and wear of high-resistance drills after the creation of implant osteotomies in rabbit tibias.
        Int J Oral Maxillofac Implants. 2011; 26: 1193-1201
        • Allsobrook O.F.L.
        • Leichter J.
        • Holborrow D.
        • Swain M.
        Descriptive study of the longevity of dental implant surgery drills.
        Clin Implant Dent Relat Res. 2011; 13: 244-254
        • Senna P.
        • Del Bel Cury A.A.
        • Kates S.
        • Meirelles L.
        Surface damage on dental implants with release of loose particles after insertion into bone.
        Clin Implant Dent Relat Res. 2015; 17: 681-692
        • Fretwurst T.
        • Nelson K.
        • Tarnow D.P.
        • Wang H.-L.
        • Giannobile W.V.
        Is metal particle release associated with peri-implant bone destruction? An emerging concept.
        J Dent Res. 2018; 97: 259-265
        • Suárez-López Del Amo F.
        • Garaicoa-Pazmiño C.
        • Fretwurst T.
        • Castilho R.M.
        • Squarize C.H.
        Dental implants-associated release of titanium particles: A systematic review.
        Clin Oral Implants Res. 2018; 29: 1085-1100
        • Olmedo D.
        • Fernández M.M.
        • Guglielmotti M.B.
        • Cabrini R.L.
        Macrophages related to dental implant failure.
        Implant Dent. 2003; 12: 75-80
        • Olmedo D.
        • Tasat D.
        • Guglielmotti M.B.
        • Cabrini R.L.
        Biodistribution of titanium dioxide from biologic compartments.
        J Mater Sci Mater Med. 2008; 19: 3049-3056
        • Olmedo D.G.
        • Duffó G.
        • Cabrini R.L.
        • Guglielmotti M.B.
        Local effect of titanium implant corrosion: an experimental study in rats.
        Int J Oral Maxillofac Surg. 2008; 37: 1032-1038
        • Olmedo D.G.
        • Paparella M.L.
        • Brandizzi D.
        • Cabrini R.L.
        Reactive lesions of peri-implant mucosa associated with titanium dental implants: a report of 2 cases.
        Int J Oral Maxillofac Surg. 2010; 39: 503-507
        • Wilson Jr., T.G.
        • Valderrama P.
        • Burbano M.
        • Blansett J.
        • Levine R.
        • Kessler H.
        • et al.
        Foreign bodies associated with peri-implantitis human biopsies.
        J Periodontol. 2015; 86: 9-15
        • Elshahawy W.
        • Watanabe I.
        • Koike M.
        Elemental ion release from four different fixed prosthodontic materials.
        Dent Mater. 2009; 25: 976-981
        • Alp G.
        • Çakmak G.
        • Sert M.
        • Burgaz Y.
        Corrosion potential in artificial saliva and possible genotoxic and cytotoxic damage in buccal epithelial cells of patients who underwent Ni-Cr based porcelain-fused-to-metal fixed dental prostheses.
        Mutat Res Genet Toxicol Environ Mutagen. 2018; 827: 19-26
        • Van der Cruyssen F.
        • de Faria Vasconcelos K.
        • Verhelst P.J.
        • Shujaat S.
        • Delsupehe A.M.
        • Hauben E.
        • et al.
        Metal debris after dental implant placement: A proof-of-concept study in fresh frozen cadavers using MRI and histological analysis.
        Int J Oral Implantol. 2019; 12: 349-356
        • Manicone P.F.
        • Iommetti P.R.
        • Raffaelli L.
        An overview of zirconia ceramics: basic properties and clinical applications.
        J Dent. 2007; 35: 819-826
        • Kelly JR Denry I.
        Stabilized zirconia as a structural ceramic: an overview.
        Dent Mater. 2008; 24: 289-298
        • Akiba Y.
        • Eguchi K.
        • Akiba N.
        • Uoshima K.
        Biological evaluation of implant drill made from zirconium dioxide.
        Clin Implant Dent Relat Res. 2017; 19: 306-315
        • Olthoff L.W.
        • Van Der Zel J.M.
        • De Ruiter W.J.
        • Vlaar S.T.
        • Bosman F.
        Computer modeling of occlusal surfaces of posterior teeth with the CICERO CAD/CAM system.
        J Prosthet Dent. 2000; 84: 154-162
        • Kim T.
        • Lee S.
        • Kim G.B.
        • Hong D.
        • Kwon J.
        • Park J.W.
        • et al.
        Accuracy of a simplified 3D-printed implant surgical guide.
        J Prosthet Dent. 2020; 124: 195-201.e2
        • Dulieu-Barton J.M.
        • Fulton M.C.
        Mechanical properties of a typical stereolithography resin.
        J Strain. 2000; 36: 81-87
        • Ozdogan A.
        • Duymus Z.Y.
        Investigating the effect of different surface treatments on Vickers hardness and flexural strength of zirconium and lithium disilicate ceramics.
        J Prosthodont. 2020; 29: 129-135
        • Mörmann W.H.
        • Stawarczyk B.
        • Ender A.
        • Sener B.
        • Attin T.
        • Mehl A.
        Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness.
        J Mech Behav Biomed Mater. 2013; 20: 113-125
      1. Mitutuyo website.
        (Available at:)
      2. Mettler Toledo website.
        (Available at:)
      3. Sensorsone Measurement Instrumentation Products website.
        (Available at:)
      4. Zirkonzahn website.
        (Available at:)
      5. Interdent website.
        (Available at:)
        • R Core Team
        R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
        (Available at:)
        https://www.r-project.org/
        Date accessed: November 18, 2020
        • Barazanchi A.
        • Li K.C.
        • Al-Amleh B.
        • Lyons K.
        • Waddell J.N.
        Adhesion of porcelain to three-dimensionally printed and soft milled cobalt chromium.
        J Prosthodont Res. 2020; 2: 120-127
        • Han X.
        • Sawada T.
        • Schille C.
        • Schweizer E.
        • Scheideler L.
        • Geis-Gerstorfer J.
        • et al.
        Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes.
        Materials (Basel). 2018; 11: 1801
        • Al Jabbari Y.S.
        • Barmpagadaki X.
        • Psarris I.
        • Zinelis S.
        Microstructural, mechanical, ionic release and tarnish resistance characterization of porcelain fused to metal Co–Cr alloys manufactured via casting and three different CAD/CAM techniques.
        J Prosthodont Res. 2019; 63: 150-156