Advertisement
Journal of Prosthetic Dentistry
Research and Education| Volume 128, ISSUE 4, P688-694, October 2022

Download started.

Ok

Correlation between 2D and 3D measurements of cement space in CAD-CAM crowns

      Abstract

      Statement of problem

      Although the 2D analysis of prosthesis cementation space has been popular, its correlation with volumetric comparison (3D data) of cement space is unclear.

      Purpose

      The purpose of this in vitro study was to evaluate the cement space in computer-aided design and computer-aided manufacturing (CAD-CAM) crowns of different materials and correlate 2D measurements of cement space with their corresponding 3D values (volume of cement space) by using microcomputed tomography (μCT) analysis of regions of interest.

      Material and methods

      Ten molar crowns were milled in lithium disilicate (LD), resin nanoceramic (RN), and zirconia (Z) ceramics. Silicone replicas were produced and used as the analog cement layer and scanned with a desktop X-ray microfocus CT scanner. Twenty-eight slices were evaluated in 3 regions: marginal, axial, and occlusal (n=84 measurement points/specimen). After 3D reconstruction of the cement space, the volume was calculated. Data were statistically evaluated through 2-way ANOVA and Bonferroni test (α=.05). The Pearson correlation test was used to investigate the correlation between the 2D and 3D data.

      Results

      The volumes of the occlusal (LD 10 ±1 mm3; RN 9 ±1 mm3) and axial regions (LD 9 ±2 mm3; RN 8 ±1 mm3) were significantly higher than the volume of the marginal region for LD and RN specimens (LD 6 ±2 mm3; RN 4 ±1 mm3) (both P<.001). For the Z group, the axial region had the highest volume (19 ±2 mm3), followed by the volumes of the occlusal (15 ±1 mm3) and marginal regions (12 ±1 mm3). The Pearson correlation test determined a moderate positive correlation of the marginal area (r=0.606, P<.001) and of the axial region (r=0.588, P<.001). However, a moderate negative correlation was found between volume and thickness of the occlusal area (r=-0.437, P=.016).

      Conclusions

      Z showed more volume of cement space, as well as thicker cement space than LD and RN. The μCT analysis is an efficient method of analyzing cement thickness and volume in ceramic crowns at the selected regions of interest. A moderate positive correlation was found between the 2D and 3D analyses for the axial and marginal regions of ceramic crowns.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Contrepois M.
        • Soenen A.
        • Bartala M.
        • Laviole O.
        Marginal adaptation of ceramic crowns: a systematic review.
        J Prosthet Dent. 2013; 110: 447-454.e10
        • Baig M.R.
        • Tan K.B.
        • Nicholls J.I.
        Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system.
        J Prosthet Dent. 2010; 104: 216-227
        • Luthardt R.G.
        • Holzhuter M.S.
        • Rudolph H.
        • Herold V.
        • Walter M.H.
        CAD/CAM-machining effects on Y-TZP zirconia.
        Dent Mater. 2004; 20: 655-662
        • Wiedhahn K.
        From blue to white: new high-strength material for Cerec--IPS e.max CAD LT.
        Int J Comput Dent. 2007; 10: 79-91
        • Reich S.
        • Uhlen S.
        • Gozdowski S.
        • Lohbauer U.
        Measurement of cement thickness under lithium disilicate crowns using an impression material technique.
        Clin Oral Investig. 2011; 15: 521-526
        • Denry I.
        • Kelly J.R.
        State of the art of zirconia for dental applications.
        Dent Mater. 2008; 24: 299-307
        • Rekow D.
        • Zhang Y.
        • Thompson V.
        Can material properties predict survival of all-ceramic posterior crowns?.
        Compend Contin Educ Dent. 2007; 28 (quiz 9, 86): 362-368
        • Vagkopoulou T.
        • Koutayas S.O.
        • Koidis P.
        • Strub J.R.
        Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic.
        Eur J Esthet Dent. 2009; 4: 130-151
        • Awada A.
        • Nathanson D.
        Mechanical properties of resin-ceramic CAD/CAM restorative materials.
        J Prosthet Dent. 2015; 114: 587-593
        • Ferruzzi F.
        • Ferrairo B.M.
        • Piras F.F.
        • Borges A.F.S.
        • Rubo J.H.
        Fatigue survival and damage modes of lithium disilicate and resin nanoceramic crowns.
        J Appl Oral Sci. 2019; 27: e20180297
        • Shembish F.A.
        • Tong H.
        • Kaizer M.
        • Janal M.N.
        • Thompson V.P.
        • Opdam N.J.
        • et al.
        Fatigue resistance of CAD/CAM resin composite molar crowns.
        Dent Mater. 2016; 32: 499-509
        • Colpani J.T.
        • Borba M.
        • Della Bona A.
        Evaluation of marginal and internal fit of ceramic crown copings.
        Dent Mater. 2013; 29: 174-180
        • Edwards Rezende C.E.
        • Sanches Borges A.F.
        • Macedo R.M.
        • Rubo J.H.
        • Griggs J.A.
        Dimensional changes from the sintering process and fit of Y-TZP copings: Micro-CT analysis.
        Dent Mater. 2017; 33: e405-e413
        • Borba M.
        • Cesar P.F.
        • Griggs J.A.
        • Della Bona A.
        Adaptation of all-ceramic fixed partial dentures.
        Dent Mater. 2011; 27: 1119-1126
        • Reich S.
        • Wichmann M.
        • Nkenke E.
        • Proeschel P.
        Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems.
        Eur J Oral Sci. 2005; 113: 174-179
        • Witkowski S.
        (CAD-)/CAM in dental technology.
        Quintessence of Dental Technology. 2005; 28: 169-184
        • Felton D.A.
        • Kanoy B.E.
        • Bayne S.C.
        • Wirthman G.P.
        Effect of in vivo crown margin discrepancies on periodontal health.
        J Prosthet Dent. 1991; 65: 357-364
        • Prudente M.S.
        • Davi L.R.
        • Nabbout K.O.
        • Prado C.J.
        • Pereira L.M.
        • Zancope K.
        • et al.
        Influence of scanner, powder application, and adjustments on CAD-CAM crown misfit.
        J Prosthet Dent. 2018; 119: 377-383
        • May L.G.
        • Kelly J.R.
        • Bottino M.A.
        • Hill T.
        Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: multi-physics FEA modeling and monotonic testing.
        Dent Mater. 2012; 28: e99-109
        • Falk A.
        • Vult von Steyern P.
        • Fransson H.
        • Thoren M.M.
        Reliability of the impression replica technique.
        Int J Prosthodont. 2015; 28: 179-180
        • Miyazaki T.
        • Nakamura T.
        • Matsumura H.
        • Ban S.
        • Kobayashi T.
        Current status of zirconia restoration.
        J Prosthodont Res. 2013; 57: 236-261
        • Silva N.R.
        • de Souza G.M.
        • Coelho P.G.
        • Stappert C.F.
        • Clark E.A.
        • Rekow E.D.
        • et al.
        Effect of water storage time and composite cement thickness on fatigue of a glass-ceramic trilayer system.
        J Biomed Mater Res B Appl Biomater. 2008; 84: 117-123
        • Huang Z.
        • Zhang L.
        • Zhu J.
        • Zhang X.
        Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology.
        J Prosthet Dent. 2015; 113: 623-627
        • Boening K.W.
        • Wolf B.H.
        • Schmidt A.E.
        • Kastner K.
        • Walter M.H.
        Clinical fit of Procera AllCeram crowns.
        J Prosthet Dent. 2000; 84: 419-424
        • Scherrer S.S.
        • de Rijk W.G.
        • Belser U.C.
        • Meyer J.M.
        Effect of cement film thickness on the fracture resistance of a machinable glass-ceramic.
        Dent Mater. 1994; 10: 172-177
      1. ANS/ADA Specification n°8. American Dental Association, Chicago1977
        • Hmaidouch R.
        • Neumann P.
        • Mueller W.D.
        Influence of preparation form, luting space setting and cement type on the marginal and internal fit of CAD/CAM crown copings.
        Int J Comput Dent. 2011; 14: 219-226
        • Nakamura T.
        • Dei N.
        • Kojima T.
        • Wakabayashi K.
        Marginal and internal fit of Cerec 3 CAD/CAM all-ceramic crowns.
        Int J Prosthodont. 2003; 16: 244-248
        • McLean J.W.
        • von Fraunhofer J.A.
        The estimation of cement film thickness by an in vivo technique.
        Br Dent J. 1971; 131: 107-111
        • Yildirim G.
        • Uzun I.H.
        • Keles A.
        Evaluation of marginal and internal adaptation of hybrid and nanoceramic systems with microcomputed tomography: An in vitro study.
        J Prosthet Dent. 2017; 118: 200-207
        • Moldovan O.
        • Luthardt R.G.
        • Corcodel N.
        • Rudolph H.
        Three-dimensional fit of CAD/CAM-made zirconia copings.
        Dent Mater. 2011; 27: 1273-1278
        • de Paula Silveira A.C.
        • Chaves S.B.
        • Hilgert L.A.
        • Ribeiro A.P.
        Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras.
        J Prosthet Dent. 2017; 117: 386-392
        • Piras F.F.
        • Ferruzzi F.
        • Ferrairo B.M.
        • Ramalho I.S.
        • Bonfante E.A.
        • Rubo J.H.
        Analysis of correlation between optical and microtomography measurements of cementation space in CAD-CAM ceramic crowns.
        J Prosthet Dent. 2020; 124: 87.e1-87.e6
        • Boitelle P.
        • Mawussi B.
        • Tapie L.
        • Fromentin O.
        A systematic review of CAD/CAM fit restoration evaluations.
        J Oral Rehabil. 2014; 41: 853-874
        • De Jager N.
        • Pallav P.
        • Feilzer A.J.
        The apparent increase of the Young's modulus in thin cement layers.
        Dent Mater. 2004; 20: 457-462
        • Hung S.H.
        • Purk J.H.
        • Tira D.E.
        • Eick J.D.
        Accuracy of one-step versus two-step putty wash addition silicone impression technique.
        J Prosthet Dent. 1992; 67: 583-589
        • Sirona D.
        INCORIS ZI.
        (Available at:)
        • Vivadent I.
        IPS e.max CAD.
        (Available at:)
        • Mai H.N.
        • Lee K.B.
        • Lee D.H.
        Fit of interim crowns fabricated using photopolymer-jetting 3D printing.
        J Prosthet Dent. 2017; 118: 208-215
        • Oka Y.
        • Sasaki J.
        • Wakabayashi K.
        • Nakano Y.
        • Okamura S.Y.
        • Nakamura T.
        • et al.
        Fabrication of a radiopaque fit-testing material to evaluate the three-dimensional accuracy of dental prostheses.
        Dent Mater. 2016; 32: 921-928
      2. 3M. Notice: Change in indication — LavaTM Ultimate restorative.
        (Available at:)