Advertisement
Journal of Prosthetic Dentistry
Research and Education| Volume 128, ISSUE 5, P1024-1031, November 2022

Analysis of the influence of the facial scanning method on the transfer accuracy of a maxillary digital scan to a 3D face scan for a virtual facebow technique: An in vitro study

      Abstract

      Statement of problem

      With the emergence of virtual articulators, virtual facebow techniques have been developed for mounting maxillary digital scans to virtual articulators. Different scanning methods can be used to obtain 3D face scans, but the influence that these methods have on the accuracy with which a maxillary digital scan is transferred to a 3D face scan is unknown.

      Purpose

      The purpose of this in vitro study was to analyze the influence of the facial scanning method on the accuracy with which a maxillary digital scan is transferred to a 3D face scan in a virtual facebow technique.

      Material and methods

      According to a virtual facebow technique, a maxillary digital scan was transferred to a standard virtual patient—who had the maxillary digital scan in its real location—guided by an intraoral transfer element by using different 3D face scans with the intraoral transfer element in place (reference 3D face scans) obtained with 2 different scanning methods: 10 obtained with an accurate scanning method based on structured white light technology and 10 obtained with a less accurate scanning method based on structure-from-motion technology. For each situation, deviation between the maxillary digital scan at the location obtained via the virtual facebow technique and at its real location was obtained in terms of distance by using a novel methodology. From these distances, the accuracy was assessed in terms of trueness and precision, according to the International Organization for Standardization (ISO) 5725-1. The Student t test with Welch correction was used to determine if the accuracy with which the maxillary digital scan was transferred to the standard virtual patient was influenced by the facial scanning method used to obtain the reference 3D face scans (α=.05).

      Results

      Significant differences (P<.05) were found among the trueness values obtained when using the different facial scanning methods, with a very large effect size. A trueness of 0.138 mm and a precision of 0.022 mm were obtained by using the structured white light scanning method, and a trueness of 0.416 mm and a precision of 0.095 mm were acquired when using the structure-from-motion scanning method.

      Conclusions

      The accuracy with which a maxillary digital scan is located with respect to a 3D face scan in a virtual facebow technique is strongly influenced by the facial scanning method used.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. The glossary of prosthodontic terms: ninth edition.
        J Prosthet Dent. 2017; 117: e1-e105
        • Nagy W.W.
        • Goldstein G.R.
        Facebow use in clinical prosthodontic practice.
        J Prosthodont. 2019; 28: 772-774
        • Rekow E.D.
        Digital dentistry: the new state of the art — is it disruptive or destructive?.
        Dent Mater. 2020; 36: 9-24
        • Alghazzawi T.F.
        Advancements in CAD/CAM technology: options for practical implementation.
        J Prosthodont Res. 2016; 60: 72-84
        • Úry E.
        • Fornai C.
        • Weber G.W.
        Accuracy of transferring analog dental casts to a virtual articulator.
        J Prosthet Dent. 2020; 123: 305-313
        • Solaberrieta E.
        • Mínguez R.
        • Barrenetxea L.
        • Etxaniz O.
        Direct transfer of the position of digitized casts to a virtual articulator.
        J Prosthet Dent. 2013; 109: 411-414
        • Solaberrieta E.
        • Otegi J.R.
        • Mínguez R.
        • Etxaniz O.
        Improved digital transfer of the maxillary cast to a virtual articulator.
        J Prosthet Dent. 2014; 112: 921-924
        • Lepidi L.
        • Chen Z.
        • Ravida A.
        • Lan T.
        • Wang H.L.
        • Li J.
        A full-digital technique to mount a maxillary arch scan on a virtual articulator.
        J Prosthodont. 2019; 28: 335-338
        • Petre A.
        • Drafta S.
        • Stefanescu C.
        • Oancea L.
        Virtual facebow technique using standardized background images.
        J Prosthet Dent. 2019; 121: 724-728
        • Solaberrieta E.
        • Garmendia A.
        • Minguez R.
        • Brizuela A.
        • Pradies G.
        Virtual facebow technique.
        J Prosthet Dent. 2015; 114: 751-755
        • Lam W.Y.H.
        • Hsung R.T.C.
        • Choi W.W.S.
        • Luk H.W.K.
        • Pow E.H.N.
        A 2-part facebow for CAD-CAM dentistry.
        J Prosthet Dent. 2016; 116: 843-847
        • Lam W.Y.H.
        • Hsung R.T.C.
        • Choi W.W.S.
        • Luk H.W.K.
        • Cheng L.Y.Y.
        • Pow E.H.N.
        A clinical technique for virtual articulator mounting with natural head position by using calibrated stereophotogrammetry.
        J Prosthet Dent. 2018; 119: 902-908
        • Revilla-León M.
        • Raney L.
        • Piedra-Cascón W.
        • Barrington J.
        • Zandinejad A.
        • Özcan M.
        Digital workflow for an esthetic rehabilitation using a facial and intraoral scanner and an additive manufactured silicone index: a dental technique.
        J Prosthet Dent. 2020; 123: 564-570
        • Granata S.
        • Giberti L.
        • Vigolo P.
        • Stellini E.
        • Di Fiore A.
        Incorporating a facial scanner into the digital workflow: a dental technique.
        J Prosthet Dent. 2020; 123: 781-785
        • Joda T.
        • Gallucci G.O.
        The virtual patient in dental medicine.
        Clin Oral Implants Res. 2015; 26: 725-726
        • Renne W.
        • Ludlow M.
        • Fryml J.
        • Schurch Z.
        • Mennito A.
        • Kessler R.
        • et al.
        Evaluation of the accuracy of 7 digital scanners: an in vitro analysis based on 3-dimensional comparisons.
        J Prosthet Dent. 2017; 118: 36-42
        • Iturrate M.
        • Lizundia E.
        • Amezua X.
        • Solaberrieta E.
        A new method to measure the accuracy of intraoral scanners along the complete dental arch: a pilot study.
        J Adv Prosthodont. 2019; 11: 331-340
        • Piedra-Cascón W.
        • Meyer M.J.
        • Methani M.M.
        • Revilla-León M.
        Accuracy (trueness and precision) of a dual-structured light facial scanner and interexaminer reliability.
        J Prosthet Dent. 2020; 124: 567-574
        • Franco de Sá Gomes C.
        • Libdy M.R.
        • Normando D.
        Scan time, reliability and accuracy of craniofacial measurements using a 3D light scanner.
        J Oral Biol Craniofac Res. 2019; 9: 331-335
        • Wong J.Y.
        • Oh A.K.
        • Ohta E.
        • Hunt A.T.
        • Rogers G.F.
        • Mulliken J.B.
        • et al.
        Validity and reliability of craniofacial anthropometric measurement of 3D digital photogrammetric images.
        Cleft Palate Craniofac J. 2008; 45: 232-239
        • Ye H.
        • Lv L.
        • Liu Y.
        • Liu Y.
        • Zhou Y.
        Evaluation of the accuracy, reliability, and reproducibility of two different 3D face-scanning systems.
        Int J Prosthodont. 2016; 29: 213-218
        • Secher J.J.
        • Darvann T.A.
        • Pinholt E.M.
        Accuracy and reproducibility of the DAVID SLS-2 scanner in three-dimensional facial imaging.
        J Craniomaxillofac Surg. 2017; 45: 1662-1670
        • Knoops P.G.M.
        • Beaumont C.A.A.
        • Borghi A.
        • Rodriguez-Florez N.
        • Breakey R.W.F.
        • Rodgers W.
        • et al.
        Comparison of three-dimensional scanner systems for craniomaxillofacial imaging.
        J Plast Reconstr Aesthet Surg. 2017; 70: 441-449
        • Liu S.
        • Srinivasan M.
        • Mörzinger R.
        • Lancelle M.
        • Beeler T.
        • Gross M.
        • et al.
        Reliability of a three-dimensional facial camera for dental and medical applications: a pilot study.
        J Prosthet Dent. 2019; 122: 282-287
        • Aung S.C.
        • Ngim R.C.K.
        • Lee S.T.
        Evaluation of the laser scanner as a surface measuring tool and its accuracy compared with direct facial anthropometric measurements.
        Br J Plast Surg. 1995; 48: 551-558
        • Kovacs L.
        • Zimmermann A.
        • Brockmann G.
        • Baurecht H.
        • Schwenzer-Zimmerer K.
        • Papadopulos N.A.
        • et al.
        Accuracy and precision of the three-dimensional assessment of the facial surface using a 3-D laser scanner.
        IEEE Trans Med Imaging. 2006; 25: 742-754
        • International Organization for Standardization
        ISO-5725-1. Accuracy (trueness and precision) of measurement methods and results - part 1: general principles and definitions.
        ISO, Geneva1994: 1-17