Advertisement
Journal of Prosthetic Dentistry

Does the incorporation of zinc into TiO2 on titanium surfaces increase bactericidal activity? A systematic review and meta-analysis

      Abstract

      Statement of problem

      Infections associated with bacterial biofilm formation are an important cause of early implant failure. With the growing number of antibiotic-resistant bacteria, the incorporation of zinc into TiO2 coatings of titanium implants has emerged to promote osseointegration and inhibit bacterial proliferation. However, a systematic assessment of its efficacy is lacking.

      Purpose

      The purpose of this systematic review and meta-analysis was to assess the bactericidal effect of zinc-modified TiO2 coatings on titanium or Ti-6Al-4V alloy.

      Material and methods

      The review was structured based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist and the peer review of electronic search strategies (PRESS) guidelines. The search was performed in Science Direct, SCOPUS, Web of Science, and PubMed databases, including experimental in vitro studies that used titanium or Ti-6Al-4V as a control group and performed bacterial assays. Meta-analysis was performed by using the standardized mean differences of antibacterial effects.

      Results

      A total of 2519 articles were collected after duplicate removal. Then, eligibility criteria and a manual search were applied to select 20 studies for qualitative analysis and 16 studies for statistical analysis. The risk of bias revealed low-quality evidence. The meta-analysis showed that zinc positively affected the bactericidal activity of TiO2 coatings (−8.79, CI95%=−11.01 to −6.57, P<.001), with a high degree of heterogeneity (I2=78%). Subgroup analysis with TiO2 nanotubes produced by anodization and ZnO nanoparticles by hydrothermal synthesis reduced heterogeneity to 43%, with the removal of outliers (I2=46%), with a favorable antibacterial effect for zinc incorporation into TiO2.

      Conclusions

      Bactericidal activity was identified for zinc incorporated into TiO2 coatings, making it an interesting option for titanium dental implants.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yu H.
        • Huang X.
        • Yang X.
        • Liu H.
        • Zhang M.
        • Zhang X.
        • et al.
        Synthesis and biological properties of Zn-incorporated micro/nano-textured surface on Ti by high current anodization.
        Mater Sci Eng C. 2017; 78: 175-184
        • Yuan Z.
        • He Y.
        • Lin C.
        • Liu P.
        • Cai K.
        Antibacterial surface design of biomedical titanium materials for orthopedic applications.
        J Mater Sci Technol. 2021; 78: 51-67
        • Kunčická L.
        • Kocich R.
        • Lowe T.C.
        Advances in metals and alloys for joint replacement.
        Prog Mater Sci. 2017; 88: 232-280
        • Gonzalez A.
        • Miñán A.G.
        • Grillo C.A.
        • Prieto E.D.
        • Schilardi P.L.
        • Fernández Lorenzo de Mele M.A.
        Characterization and antimicrobial effect of a bioinspired thymol coating formed on titanium surface by one-step immersion treatment.
        Dent Mater. 2020; 36: 1495-1507
        • Cotton G.C.
        • Lagesse N.R.
        • Parke L.S.
        • Meledandri C.J.
        Antibacterial nanoparticles. comprehensive nanoscience and nanotechnology.
        Elsevier, Dunedin, New Zealand2019: 65-82
        • Ferraris S.
        • Spriano S.
        Antibacterial titanium surfaces for medical implants.
        Mater Sci Eng C. 2016; 61: 965-978
        • Hu H.
        • Zhang W.
        • Qiao Y.
        • Jiang X.
        • Liu X.
        • Ding C.
        Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium.
        Acta Biomater. 2012; 8: 904-915
        • Yamaguchi M.
        Role of nutritional zinc in the prevention of osteoporosis.
        Mol Cell Biochem. 2010; 338: 241-254
        • Vimalraj S.
        • Rajalakshmi S.
        • Saravanan S.
        • Thirumalai D.
        • Kadarkarai M.
        • Rajkumar A.V.
        • et al.
        Zinc chelated morin promotes osteoblast differentiation over its uncomplexed counterpart.
        Process Biochem. 2019; 82: 167-172
        • Jin G.
        • Cao H.
        • Qiao Y.
        • Meng F.
        • Zhu H.
        • Liu X.
        Osteogenic activity and antibacterial effect of zinc ion implanted titanium.
        Colloids Surfaces B Biointerfaces. 2014; 117: 158-165
        • Pesode P.A.
        • Barve S.B.
        Recent advances on the antibacterial coating on titanium implant by micro-Arc oxidation process.
        Mater Today Proc. 2021; 4: 2021
        • Phan T.-N.
        • Buckner T.
        • Sheng J.
        • Baldeck J.D.
        • Marquis R.E.
        Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms.
        Oral Microbiol Immunol. 2004; 19: 31-38
        • Mahdavi-Roshan M.
        Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women.
        Clin Cases Miner Bone Metab. 2015; 12: 18-21
        • Kellesarian S.V.
        • Yunker M.
        • Ramakrishnaiah R.
        • Malmstrom H.
        • Kellesarian T.V.
        • Ros Malignaggi V.
        • et al.
        Does incorporating zinc in titanium implant surfaces influence osseointegration? A systematic review.
        J Prosthet Dent. 2016; 117: 41-47
        • Sopchenski L.
        • Popat K.
        • Soares P.
        Bactericidal activity and cytotoxicity of a zinc doped PEO titanium coating.
        Thin Solid Films. 2018; 660: 477-483
        • Norowski P.A.
        • Bumgardner J.D.
        Biomaterial and antibiotic strategies for peri-implantitis: A review.
        J Biomed Mater Res Part B Appl Biomater. 2009; 88: 530-543
        • Yoshinari M.
        • Oda Y.
        • Kato T.
        • Okuda K.
        • Hirayama A.
        Influence of surface modifications to titanium on oral bacterial adhesion in vitro.
        J Biomed Mater Res. 2000; 52: 388-394
        • Pfau E.A.
        • Avila-Campos M.J.
        Prevotella intermedia and Porphyromonas gingivalis isolated from osseointegrated dental implants: Colonization and antimicrobial susceptibility.
        Brazilian J Microbiol. 2005; 36: 281-285
        • Coelho A.M.
        • Lopes M. de F.
        • Kok J.
        Impact of manganese, copper and zinc ions on the transcriptome of the nosocomial pathogen enterococcus faecalis V583. Rutherford J.
        PLoS One. 2011; 6: 26519
        • Formosa-Dague C.
        • Speziale P.
        • Foster T.J.
        • Geoghegan J.A.
        • Dufrêne Y.F.
        Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG.
        Proc Natl Acad Sci. 2016; 113: 410-415
        • Brown L.R.
        • Caulkins R.C.
        • Schartel T.E.
        • Rosch J.W.
        • Honsa E.S.
        • Schultz-Cherry S.
        • et al.
        Increased zinc availability enhances initial aggregation and biofilm formation of Streptococcus pneumoniae.
        Front Cell Infect Microbiol. 2017; 7: 233
        • Eshed M.
        • Lellouche J.
        • Matalon S.
        • Gedanken A.
        • Banin E.
        Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model.
        Langmuir. 2012; 28: 12288-12295
        • Magnusson K.
        • Petersson G.
        • Birkhed D.
        Effect of dentifrices with antimicrobial agents.
        Oral Health Prev Dent. 2007; 5: 223-227
        • Page M.J.
        • Moher D.
        • Bossuyt P.M.
        • Boutron I.
        • Hoffmann T.C.
        • Mulrow C.D.
        • et al.
        PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews.
        BMJ. 2021; 372: 160-196
        • Jessie M.
        • Margaret S.
        • Salzwedel D.M.
        • Elise C.
        • Vicki F.C.L.
        PRESS - Peer review of electronic search strategies: 2015 guideline explanation and elaboration (PRESS E&E). 1a.
        CADTH, Ottawa2016: 79
        • Ouzzani M.
        • Hammady H.
        • Fedorowicz Z.
        • Elmagarmid A.
        Rayyan-a web and mobile app for systematic reviews.
        Syst Rev. 2016; 5: 210-246
        • Sarkis-Onofre R.
        • Skupien J.
        • Cenci M.
        • Moraes R.
        • Pereira-Cenci T.
        The role of resin cement on bond strength of glass-fiber posts luted into root canals: A systematic review and meta-analysis of in vitro studies.
        Oper Dent. 2014; 39: 31-44
        • Du Q.
        • Wei D.
        • Liu S.
        • Cheng S.
        • Hu N.
        • Wang Y.
        • et al.
        The hydrothermal treated Zn-incorporated titania based microarc oxidation coating: Surface characteristics, apatite-inducing ability and antibacterial ability.
        Surf Coatings Technol. 2018; 352: 489-500
        • Huang M.
        • Liu T.
        • Peng X.
        • Wang H.
        • Pan Z.
        • Fu J.
        Antibacterial ability of Zn contained nanotube arrays on titanium surfaces.
        Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met Mater Eng. 2014; 43: 2511-2514
        • Jin G.
        • Qin H.
        • Cao H.
        • Qian S.
        • Zhao Y.
        • Peng X.
        • et al.
        Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium.
        Biomaterials. 2014; 35: 7699-7713
        • Kranz S.
        • Guellmar A.
        • Voelpel A.
        • Lesser T.
        • Tonndorf-Martini S.
        • Schmidt J.
        • et al.
        Bactericidal and biocompatible properties of plasma chemical oxidized titanium (TiOB®) with antimicrobial surface functionalization.
        Materials (Basel). 2019; : 16-22
        • Lin M.H.
        • Wang Y.H.
        • Kuo C.H.
        • Ou S.F.
        • Huang P.Z.
        • Song T.Y.
        • et al.
        Hybrid ZnO/chitosan antimicrobial coatings with enhanced mechanical and bioactive properties for titanium implants.
        Carbohydr Polym. 2021; 257: 117639
        • Liu W.
        • Su P.
        • Gonzales A.
        • Chen S.
        • Wang N.
        • Wang J.
        • et al.
        Optimizing stem cell functions and antibacterial properties of TiO2 nanotubes incorporated with ZnO nanoparticles: Experiments and modeling.
        Int J Nanomed. 2015; 10: 1997-2019
        • Lv Y.
        • Cai G.
        • Zhang X.
        • Fu S.
        • Zhang E.
        • Yang L.
        • et al.
        Microstructural characterization and in vitro biological performances of Ag, Zn co-incorporated TiO2 coating.
        Ceram Int. 2020; 46: 29160-29172
        • Roguska A.
        • Pisarek M.
        • Andrzejczuk M.
        • Lewandowska M.
        Synthesis and characterization of ZnO and Ag nanoparticle-loaded TiO2 nanotube composite layers intended for antibacterial coatings.
        Thin Solid Films. 2014; 553: 173-178
        • Roknian M.
        • Fattah-alhosseini A.
        • Gashti S.O.
        • Keshavarz M.K.
        Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution.
        J Alloys Compd. 2018; 40: 330-345
        • Shen X.
        • Hu Y.
        • Xu G.
        • Chen W.
        • Xu K.
        • Ran Q.
        • et al.
        Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium.
        ACS Appl Mater Interfaces. 2014; 6: 16426-16440
        • Tsai M.T.
        • Chang Y.Y.
        • Huang H.L.
        • Hsu J.T.
        • Chen Y.C.
        • Wu A.Y.J.
        Characterization and antibacterial performance of bioactive Ti-Zn-O coatings deposited on titanium implants.
        Thin Solid Films. 2013; 528: 143-150
        • Zhao B.H.
        • Zhang W.
        • Wang D.N.
        • Feng W.
        • Liu Y.
        • Lin Z.
        • et al.
        Effect of Zn content on cytoactivity and bacteriostasis of micro-arc oxidation coatings on pure titanium.
        Surf Coatings Technol. 2013; 228: 428-432
        • Zhang K.
        • Zhu Y.
        • Liu X.
        • Cui Z.
        • Xianjin Y.
        • Yeung K.W.K.
        • et al.
        Sr/ZnO doped titania nanotube array: An effective surface system with excellent osteoinductivity and self-antibacterial activity.
        Mater Des. 2017; 130: 403-412
        • Zhang R.
        • Liu X.
        • Xiong Z.
        • Huang Q.
        • Yang X.
        • Yan H.
        Novel micro/nanostructured TiO2/ZnO coating with antibacterial capacity and cytocompatibility.
        Ceram Int. 2018; 44: 9711-9719
        • Zhang X.
        • Yang L.
        • Lu X.
        • Lv Y.
        • Jiang D.
        • Yu Y.
        • et al.
        Characterization and property of dual-functional Zn-incorporated TiO2 micro-arc oxidation coatings: The influence of current density.
        J Alloys Compd. 2019; 810: 1-14
        • Zhang X.
        • Wang H.
        • Li J.
        • He X.
        • Hang R.
        • Huang X.
        • et al.
        Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium.
        Ceram Int. 2016; 42: 17095-17100
        • Cheng H.
        • Mao L.
        • Wang L.
        • Hu H.
        • Chen Y.
        • Gong Z.
        • et al.
        Bidirectional regulation of zinc embedded titania nanorods: Antibiosis and osteoblastic cell growth.
        RSC Adv. 2015; 5: 14470-14481
        • Elizabeth E.
        • Baranwal G.
        • Krishnan A.G.
        • Menon D.
        • Nair M.
        ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity.
        Nanotechnology. 2014; 25: 115101
        • Gunputh U.F.
        • Le H.
        • Besinis A.
        • Tredwin C.
        • Handy R.D.
        Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: Controlled release of Zn and antimicrobial properties against staphylococcus aureus.
        Int J Nanomedicine. 2019; 14: 3583-3600
        • Huo K.
        • Zhang X.
        • Wang H.
        • Zhao L.
        • Liu X.
        • Chu P.K.
        Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays.
        Biomaterials. 2013; 34: 3467-3478
        • Ma Z.
        • Jacobsen F.E.
        • Giedroc D.P.
        Coordination chemistry of bacterial metal transport and sensing.
        Chem Rev. 2009; 109: 4644-4681
        • Li G.Z.
        • Zhao Q.M.
        • Yang H.L.
        • Liu Z.T.
        Fabrication and characterization of ZnO-coated TiO2 nanotube arrays.
        Compos Interfaces. 2015; 23: 125-132
        • Liu W.
        • Su P.
        • Chen S.
        • Wang N.
        • Ma Y.
        • Liu Y.
        • et al.
        Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility.
        Nanoscale. 2014; 6: 9050-9062
        • Liu W.
        • Chen S.
        • Zhang Z.
        • Webster T.J.
        Antibacterial properties of TiO2 nanotubes incorporated with ZnO.
        (Proceedings of the 40th annual northeast bioengineering conference (NEBEC) IEEE; 2014 Apr 25-27; Boston, MA, USA)2014: 1-2
        • Pang S.
        • He Y.
        • Zhong R.
        • Guo Z.
        • He P.
        • Zhou C.
        • et al.
        Multifunctional ZnO/TiO2 nanoarray composite coating with antibacterial activity, cytocompatibility and piezoelectricity.
        Ceram Int. 2019; 45: 12663-12671
        • Petrini P.
        • Arciola C.R.
        • Pezzali I.
        • Bozzini S.
        • Montanaro L.
        • Tanzi M.C.
        • et al.
        Antibacterial activity of zinc modified titanium oxide surface.
        Int J Artif Organs. 2006; 29: 434-442
        • Roguska A.
        • Belcarz A.
        • Pisarek M.
        • Ginalska G.
        • Lewandowska M.
        TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles - an unexpected overdose effect decreasing their antibacterial efficacy.
        Mater Sci Eng C. 2015; 51: 158-166
        • Roguska A.
        • Belcarz A.
        • Suchecki P.
        • Andrzejczuk M.
        • Lewandowska M.
        Antibacterial composite layers on Ti: Role of ZnO nanoparticles.
        Arch Metall Mater. 2016; 61: 937-940
        • Roguska A.
        • Belcarz A.
        • Zalewska J.
        • Holdyński M.
        • Andrzejczuk M.
        • Pisarek M.
        • et al.
        Metal TiO2 nanotube layers for the treatment of dental implant infections.
        ACS Appl Mater Interfaces. 2018; 10: 17089-17099
        • Shao S-y
        • Chen J-x
        • Tang H-y
        • Ming P-p
        • Yang J.
        • Zhu W-q
        • et al.
        A titanium surface modified with zinc-containing nanowires: Enhancing biocompatibility and antibacterial property in vitro.
        Appl Surf Sci. 2020; 515: 1-9
        • Simi V.S.
        • Kabali J.
        • Rajendran N.
        Development and characterization of zinc incorporated titania nanotube arrays for biomedical applications.
        Trends Biomater Artif Organs. 2015; 29: 286-293
        • Vijayalakshmi U.
        • Chellappa M.
        • Anjaneyulu U.
        • Manivasagam G.
        • Sethu S.
        Influence of coating parameter and sintering atmosphere on the corrosion resistance behavior of electrophoretically deposited composite coatings.
        Mater Manuf Process. 2015; 31: 95-106
        • Wu X.
        • Yao L.
        • Al-Baadani M.A.
        • Ping L.
        • Wu S.
        • Al-Bishari A.M.
        • et al.
        Preparation of multifunctional drug sustained-release system by atomic layer deposition of ZnO in mesoporous titania coating.
        Ceram Int. 2020; 46: 9406-9414
        • Yao S.
        • Feng X.
        • Lu J.
        • Zheng Y.
        Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes.
        Nanotechnology. 2018; 24: 244003-244058
        • Zhao X.
        • Yang J.
        • You J.
        Surface modification of TiO2 coatings by Zn ion implantation for improving antibacterial activities.
        Bull Mater Sci. 2016; 39: 285-291
        • Brayner R.
        • Ferrari-Iliou R.
        • Brivois N.
        • Djediat S.
        • Benedetti M.F.
        • Fiévet F.
        Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium.
        Nano Lett. 2006; 6: 866-870
        • Zhou X.
        • Nguyen N.T.
        • Özkan S.
        • Schmuki P.
        Anodic TiO2 nanotube layers: Why does self-organized growth occur: A mini review.
        Electrochem commun. 2014; 46: 157-162
        • Nair S.
        • Sasidharan A.
        • Divya Rani V.V.
        • Menon D.
        • Nair S.
        • Manzoor K.
        • et al.
        Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells.
        J Mater Sci Mater Med. 2009; 20: 235-241
        • Li Y.
        • Xiong W.
        • Zhang C.
        • Gao B.
        • Guan H.
        • Cheng H.
        • et al.
        Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: In vitro and in vivo studies.
        J Biomed Mater Res - Part A. 2013; 102: 3939-3950
        • Yi G.
        • Li X.
        • Yuan Y.
        • Zhang Y.
        Redox active Zn/ZnO duo generating superoxide (˙O2-) and H2O2 under all conditions for environmental sanitation.
        Environ Sci Nano. 2019; 6: 68-74
        • Samiei M.
        • Farjami A.
        • Dizaj S.M.
        • Lotfipour F.
        Nanoparticles for antimicrobial purposes in endodontics: A systematic review of in vitro studies.
        Mater Sci Eng C. 2016; 58: 1269-1278
        • Rai M.
        • Yadav A.
        • Gade A.
        Silver nanoparticles as a new generation of antimicrobials.
        Biotechnol Adv. 2009; 27: 76-83
        • Filipović U.
        • Dahmane R.G.
        • Ghannouchi S.
        • Zore A.
        • Bohinc K.
        Bacterial adhesion on orthopedic implants.
        Adv Colloid Interface Sci. 2020; 283: 102228
        • Tavassoli Hojati S.
        • Alaghemand H.
        • Hamze F.
        • Ahmadian Babaki F.
        • Rajab-Nia R.
        • Rezvani M.B.
        • et al.
        Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles.
        Dent Mater. 2013; 29: 495-505
        • Zimmerli W.
        • Trampuz A.
        • Ochsner P.E.
        Prosthetic-joint infections.
        N Engl J Med. 2004; 351: 1645-1654
        • Schulz K.F.
        CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomized trials.
        Ann Intern Med. 2010; 152: 726
        • Krithikadatta J.
        • Datta M.
        • Gopikrishna V.
        CRIS Guidelines (Checklist for reporting in vitro studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting in vitro studies in experimental dental research.
        J Conserv Dent. 2014; 17: 301
        • Ozkan S.
        • Mazare A.
        • Schmuki P.
        Critical parameters and factors in the formation of spaced TiO2 nanotubes by self-organizing anodization.
        Electrochim Acta. 2018; 268: 435-447
        • Zhao X.
        • Peng C.
        • You J.
        Plasma-Sprayed ZnO/TiO2 Coatings with Enhanced Biological Performance.
        J Therm Spray Technol. 2017; 26: 1301-1307