Advertisement
Journal of Prosthetic Dentistry

Strength of titanium-zirconium alloy implants with a conical connection after implantoplasty

Published:September 20, 2022DOI:https://doi.org/10.1016/j.prosdent.2022.08.015

      Abstract

      Statement of problem

      Peri-implantitis occurs around dental implants, and implantoplasty has been used to address this ongoing disease; however, the changes to the physical properties of an implant after implantoplasty have not been well documented.

      Purpose

      The purpose of this in vitro study was to determine the effect of implantoplasty on fracture strength and the load required for plastic deformation after cyclic fatigue on dental implants.

      Material and methods

      Twenty-six titanium/zirconium (TiZr) alloy implants (Roxolid Bone Level Implant; 4.1×10 mm) were embedded with 50% thread exposure and divided into 4 groups based on whether they had implantoplasty treatment by using different diamond rotary instruments and/or cyclic loading at 250 N for 2 million cycles: C0 (control, no cyclic loading), T0 (test, no cyclic loading), CM (control, cyclic loading), and TM (test, cyclic loading). After implantoplasty and/or cyclic loading, all implants underwent a load-to-failure test. The maximum fracture strength (FS) and load required for the onset of plastic deformation (PD) were recorded in Newtons. One-way ANOVA and nonparametric comparisons with control by using the Dunn and Wilcoxon method for joint ranking were used for statistical analysis.

      Results

      The mean ±standard deviation FS for C0, CM, T0, and TM was 1465.2 ±86.4 N, 1480.7 ±64.1 N, 1299.3 ±123.8 N, and 1252.1 ±85.7 N, respectively. The mean ±standard deviation load for onset of PD for C0, CM, T0, and TM was 860.2 ±88.1 N, 797.0 ±130.5 N, 776.5 ±181.8 N, and 631.3 ±84.5 N, respectively. The TM group had a significantly lower FS and PD than the C0, CM, and T0 groups (P<.05)

      Conclusions

      Both fracture strength (FS) and the onset of plastic deformation (PD) were significantly reduced after a TiZr alloy implant received implantoplasty and cyclic loading.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jepsen S.
        • Berglundh T.
        • Genco R.
        • Aass A.M.
        • Demirel K.
        • Derks J.
        • et al.
        Primary prevention of peri-implantitis: managing peri-implant mucositis.
        J Clin Periodontol. 2015; 42: S152-S157
        • Lee C.T.
        • Huang Y.W.
        • Zhu L.
        • Weltman R.
        Prevalences of peri-implantitis and peri-implant mucositis: systematic review and meta-analysis.
        J Dent. 2017; 62: 1-12
        • Romanos G.E.
        • Javed F.
        • Delgado-Ruiz R.A.
        • Calvo-Guirado J.L.
        Peri-implant diseases: a review of treatment interventions.
        Dent Clin North Am. 2015; 59: 157-178
        • Figuero E.
        • Graziani F.
        • Sanz I.
        • Herrera D.
        • Sanz M.
        Management of peri-implant mucositis and peri- implantitis.
        Periodontol 2000. 2014; 66: 255-273
        • Ramanauskaite A.
        • Becker K.
        • Schwarz F.
        Clinical characteristics of peri-implant mucositis and peri- implantitis.
        Clin Oral Implants Res. 2018; 29: 551-556
        • Suarez F.
        • Monje A.
        • Galindo-Moreno P.
        • Wang H.L.
        Implant surface detoxification: a comprehensive review.
        Implant Dent. 2013; 22: 465-473
        • Daugela P.
        • Cicciù M.
        • Saulacic N.
        Surgical regenerative treatments for peri-implantitis: meta- analysis of recent findings in a systematic literature review.
        J Oral Maxillofac Res. 2016; 7: e15
        • Froum S.J.
        • Dagba A.S.
        • Shi Y.
        • Perez-Asenjo A.
        • Rosen P.S.
        • Wang W.C.
        Successful surgical protocols in the treatment of peri-implantitis: a narrative review of the literature.
        Implant Dent. 2016; 25: 416-426
        • Esteves Lima R.P.
        • Abreu L.G.
        • Belém F.V.
        • Pereira G.H.M.
        • Brant R.A.
        • Costa F.O.
        Is implantoplasty efficacious at treating peri-implantitis? a systematic review and meta-analysis.
        J Oral Maxillofac Surg. 2021; 79: 2270-2279
        • Jordana F.
        • Susbielles L.
        • Colat-Parros J.
        Periimplantitis and implant body roughness: a systematic review of literature.
        Implant Dent. 2018; 27: 672-681
        • Lasserre J.F.
        • Brecx M.C.
        • Toma S.
        Implantoplasty versus glycine air abrasion for the surgical treatment of peri-implantitis: a randomized clinical trial.
        Int J Oral Maxillofac Implants. 2020; 35: 197-206
        • Albrektsson T.
        • Wennerberg A.
        Oral implant surfaces: Part 1—Review focusing on topographic and chemical properties of different surfaces and in-vivo responses to them.
        Int J Prosthdodont. 2004; 17: 536-543
        • Teughels W.
        • Van Assche N.
        • Sliepen I.
        • Quirynen M.
        Effect of material characteristics and/or surface topography on biofilm development.
        Clin Oral Implants Res. 2006; 17: 68-81
        • Bollen C.M.
        • Papaioanno W.
        • Van Eldere J.
        • Schepers E.
        • Quirynen M.
        • van Steenberghe D.
        The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis.
        Clin Oral Implants Res. 1996; 7: 201-211
        • Quirynen M.
        • van der Mei H.C.
        • Bollen C.M.
        • Schotte A.
        • Marechal M.
        • Doornbusch G.I.
        • et al.
        An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque.
        J Dent Res. 1993; 72: 1304-1309
        • Costa-Berenguer X.
        • García-García M.
        • Sánchez-Torres A.
        • Sanz-Alonso M.
        • Figueiredo R.
        • Valmaseda-Castellón E.
        Effect of implantoplasty on fracture resistance and surface roughness of standard diameter dental implants.
        Clin Oral Implants Res. 2018; 29: 46-54
        • Tawse-Smith A.
        • Kota A.
        • Jayaweera Y.
        • Vuuren W.J.
        • Ma S.
        The effect of standardised implantoplasty protocol on titanium surface roughness: an in-vitro study.
        Braz Oral Res. 2016; 30: e137
        • de Souza Júnior J.M.
        • Oliveira de Souza J.G.
        • Pereira Neto A.L.
        • Iaculli F.
        • Piattelli A.
        • Bianchini M.A.
        Analysis of effectiveness of different rotational instruments in implantoplasty: an in vitro study.
        Implant Dent. 2016; 25: 341-347
        • Meier R.M.
        • Pfammatter C.
        • Zitzmann N.U.
        • Filippi A.
        • Kühl S.
        Surface quality after implantoplasty.
        Schweiz Monatsschr Zahnmed. 2012; 122: 714-724
        • Ramel C.F.
        • Lüssi A.
        • Özcan M.
        • Jung R.E.
        • Hämmerle C.H.
        • Thoma D.S.
        Surface roughness of dental implants and treatment time using six different implantoplasty procedures.
        Clin Oral Implants Res. 2016; 27: 776-781
        • Bianchini M.A.
        • Galarraga-Vinueza M.E.
        • Apaza-Bedoya K.
        • De Souza J.M.
        • Magini R.
        • Schwarz F.
        Two to six-year disease resolution and marginal bone stability rates of a modified resective-implantoplasty therapy in 32 peri-implantitis cases.
        Clin Implant Dent Relat Res. 2019; 21: 758-765
        • Monje A.
        • Pons R.
        • Amerio E.
        • Wang H.L.
        • Nart J.
        Resolution of peri-implantitis by means of implantoplasty as adjunct to surgical therapy: A retrospective study.
        J Periodontol. 2022; 93: 110-122
        • Romeo E.
        • Ghisolfi M.
        • Murgolo N.
        • Chiapasco M.
        • Lops D.
        • Vogel G.
        Therapy of peri-implantitis with resective surgery. A 3-year clinical trial on rough screw-shaped oral implants. Part I: clinical outcome.
        Clin Oral Implants Res. 2005; 16: 9-18
        • Romeo E.
        • Lops D.
        • Chiapasco M.
        • Ghisolfi M.
        • Vogel G.
        Therapy of peri-implantitis with resective surgery. A 3-year clinical trial on rough screw-shaped oral implants. Part II: radiographic outcome.
        Clin Oral Implants Res. 2007; 18: 179-187
        • Pommer B.
        • Haas R.
        • Mailath-Pokorny G.
        • Fürhauser R.
        • Watzek G.
        • Busenlechner D.
        • et al.
        Periimplantitis treatment: long-term comparison of laser decontamination and implantoplasty surgery.
        Implant Dent. 2016; 25: 646-649
        • Schwarz F.
        • John G.
        • Schmucker A.
        • Sahm N.
        • Becker J.
        Combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination: a 7-year follow-up observation.
        J Clin Periodontol. 2017; 44: 337-342
        • Schwarz F.
        • John G.
        • Becker J.
        The influence of implantoplasty on the diameter, chemical surface composition, and biocompatibility of titanium implants.
        Clin Oral Investig. 2017; 21: 2355-2361
        • Chan H.L.
        • Oh W.S.
        • Ong H.S.
        • Fu J.H.
        • Steigmann M.
        • Sierraalta M.
        • et al.
        Impact of implantoplasty on strength of the implant-abutment complex.
        Int J Oral Maxillofac Implants. 2013; 28: 1530-1535
        • Gehrke S.A.
        • Aramburú Júnior J.S.
        • Dedavid B.A.
        • Shibli J.A.
        Analysis of implant strength after implantoplasty in three implant-abutment connection designs: An in vitro study.
        Int J Oral Maxillofac Implants. 2016; 31: e65-e70
        • Cordeiro J.M.
        • Beline T.
        • Ribeiro A.L.R.
        • Rangel E.C.
        • da Cruz N.C.
        • Landers R.
        • et al.
        Development of binary and ternary titanium alloys for dental implants.
        Dent Mater. 2017; 33: 1244-1257
        • Medvedev A.E.
        • Molotnikov A.
        • Lapovok R.
        • Zeller R.
        • Berner S.
        • Habersetzer P.
        Microstructure and mechanical properties of Ti-15Zr alloy used as dental implant material.
        J Mech Behav Biomed Mater. 2016; 62: 384-398
        • Han M.K.
        • Hwang M.J.
        • Yang M.S.
        • Yang H.S.
        • Song H.J.
        • Park Y.J.
        Effect of zirconium content on the microstructure, physical properties and corrosion behavior of Ti alloys.
        Material Sci and Engineering. 2014; 616: 268-274
        • Wang B.
        • Ruan W.
        • Liu J.
        • Zhang T.
        • Yang H.
        • Ruan J.
        Microstructure, mechanical properties, and preliminary biocompatibility evaluation of binary Ti-Zr alloys for dental application.
        J Biomater Appl. 2019; 33: 766-775
        • Brizuela-Velasco A.
        • Pérez-Pevida E.
        • Jiménez-Garrudo A.
        • Gil-Mur F.J.
        • Manero J.M.
        • Punset-Fuste M.
        • et al.
        Mechanical Characterization and Biomechanical and Biological Behaviours of Ti-Zr Binary-Alloy Dental Implants.
        Biomed Res Int. 2017; 2017: 2785863
        • Okazaki Y.
        • Rao S.
        • Ito Y.
        • Tateishi T.
        Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V.
        Biomaterials. 1998; 19: 1197-1215
      1. ISO 14801 Dynamic fatigue test for endosseous dental implants. International Organization for Standardization, Vernier, Switzerland2007
        • Bonfante E.A.
        • Coelho P.G.
        A Critical Perspective on Mechanical Testing of Implants and Prostheses.
        Adv Dent Res. 2016; 28: 18-27
        • Trulsson M.
        Force encoding by human periodontal mechanoreceptors during mastication.
        Arch Oral Biol. 2007; 52: 357-360
        • Hagberg C.
        Assessment of bite force: a review.
        J Craniomandib Disord. 1987; 1: 162-169
        • Mishra S.K.
        • Chowdhary R.
        • Chrcanovic B.R.
        • Brånemark P.I.
        Osseoperception in dental implants: a systematic review.
        J Prosthodont. 2016; 25: 185-195
        • Jacobs R.
        • van Steenberghe D.
        Comparative evaluation of the oral tactile function by means of teeth or implant-supported prostheses.
        Clin Oral Impl Res. 1991; 2: 75-80
        • Jacobs R.
        • van Steenberghe D.
        Role of periodontal ligament receptors in tactile function of teeth. A review.
        J Periodont Res. 1994; 29: 153-167
        • Flanagan D.
        Bite force and dental implant treatment: a short review.
        Med Devices (Auckl). 2017; 10: 141-148