Advertisement
Journal of Prosthetic Dentistry

Connector design effects on the in vitro fracture resistance of 3-unit monolithic prostheses produced from 4 CAD-CAM materials

  • Ye-Jin Kim
    Affiliations
    Graduate student, Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
    Search for articles by this author
  • Kyung-Ho Ko
    Affiliations
    Associate Professor, Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
    Search for articles by this author
  • Chan-Jin Park
    Affiliations
    Professor, Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
    Search for articles by this author
  • Lee-Ra Cho
    Affiliations
    Professor, Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
    Search for articles by this author
  • Yoon-Hyuk Huh
    Correspondence
    Corresponding author: Dr Yoon-Hyuk Huh, Department of Prosthodontics, College of Dentistry, Gangneung-Wonju National University, Jukheongil 7, Gangneung, 25457, REPUBLIC OF KOREA
    Affiliations
    Associate Professor, Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University, Gangneung, Republic of Korea
    Search for articles by this author
Published:November 03, 2022DOI:https://doi.org/10.1016/j.prosdent.2022.09.018

      Abstract

      Statement of problem

      Studies that compared the fracture strength of monolithic lithium disilicate and 5-mol% yttria partially stabilized zirconia multiunit fixed dental prostheses are sparse.

      Purpose

      As the connector is the weakest part of a fixed dental prosthesis, the purpose of this in vitro study was to investigate the effect of connector designs and material on the fracture strength of 3-unit monolithic fixed dental prostheses.

      Material and methods

      Resin-ceramic canine and premolar teeth (N=144) were prepared for fixed dental prosthesis abutments. Prostheses with 3 connector designs (width=height, width<height, and width>height) were made from 2 types of lithium disilicate (IPS e.max CAD and Amber Mill) and 5-mol% yttria partially stabilized zirconia (3M Lava Esthetic and Katana Zirconia UTML). Fracture strengths were measured after 200 000 cycles of dynamic loading of 50 N and thermocycling at 5 °C and 55 °C, and the fracture patterns were analyzed. Two-way analysis of variance and the Fisher exact test were used for statistical analysis (α=.05).

      Results

      The material and connector design affected the fracture strength of fixed dental prostheses (P<.05), and a significant interaction was found between the material and connector design (P<.05). The IPS e.max CAD material had significantly lower fracture strength than Amber Mill, 3M Lava Esthetic, or Katana Zirconia UTML (P<.05). Connector designs with a greater width versus height showed significantly lower fracture strengths than other designs (P<.05).

      Conclusions

      The connector design of 3-unit fixed dental prostheses, particularly the connector height, may affect fracture strength depending on the prosthesis material.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Zhang Y.
        • Lawn B.R.
        Novel Zirconia Materials in Dentistry.
        J Dent Res. 2018; 97: 140-147
        • Sulaiman T.A.
        Materials in digital dentistry-A review.
        J Esthet Restor Dent. 2020; 32: 171-181
        • Ku S.W.
        • Park J.H.
        • Ko Y.M.
        Mechanical Properties of Ceramic/Polymer Blocks for CAD/CAM Dental Restoration.
        Kor J Dent Mater. 2017; 44: 107-117
        • Pjetursson B.E.
        • Sailer I.
        • Makarov N.A.
        • Zwahlen M.
        • Thoma D.S.
        All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs.
        Dent Mater. 2015; 31: 624-639
        • Lüthy H.
        • Filser F.
        • Loeffel O.
        • Schumacher M.
        • Gauckler L.J.
        • Hammerle C.H.F.
        Strength and reliability of four-unit all-ceramic posterior bridges.
        Dent Mater. 2005; 21: 930-937
        • Zhang F.
        • Reveron H.
        • Spies B.C.
        • Van Meerbeek B.
        • Chevalier J.
        Trade-off between fracture resistance and translucency of zirconia and lithium-disilicate glass ceramics for monolithic restorations.
        Acta Biomater. 2019; 91: 24-34
        • Kelly J.R.
        Ceramics in restorative and prosthetic dentistry.
        Annu Rev Mater Res. 1997; 27: 443-468
        • Sulaiman T.A.
        • Abdulmajeed A.A.
        • Delgado A.
        • Donovan T.E.
        Fracture rate of 188695 lithium disilicate and zirconia ceramic restorations after up to 7.5 years of clinical service: A dental laboratory survey.
        J Prosthet Dent. 2020; 123: 807-810
        • Lawson N.C.
        • Jurado C.A.
        • Huang C.T.
        • Morris G.P.
        • Burgess J.O.
        • Liu P.R.
        • et al.
        Effect of Surface Treatment and Cement on Fracture Load of Traditional Zirconia (3Y), Translucent Zirconia (5Y), and Lithium Disilicate Crowns.
        J Prosthodont. 2019; 28: 659-665
        • Pereira G.K.R.
        • Graunke P.
        • Maroli A.
        • Zucuni C.P.
        • Prochnow C.
        • Valandro L.F.
        • et al.
        Lithium disilicate glass-ceramic vs translucent zirconia polycrystals bonded to distinct substrates: Fatigue failure load, number of cycles for failure, survival rates, and stress distribution.
        J Mech Behav Biomed Mater. 2019; 91: 122-130
        • Esquivel-Upshaw J.
        • Rose W.
        • Oliveira E.
        • Yang M.
        • Clark A.E.
        • Anusavice K.
        Randomized, controlled clinical trial of bilayer ceramic and metal-ceramic crown performance.
        J Prosthodont. 2013; 22: 166-173
        • Takeichi T.
        • Katsoulis J.
        • Blatz M.B.
        Clinical outcome of single porcelain-fused-to-zirconium dioxide crowns: a systematic review.
        J Prosthet Dent. 2013; 110: 455-461
        • Flask J.D.
        • Thompson G.A.
        • Singh M.
        • Berzins D.W.
        Edge chipping of translucent zirconia.
        J Prosthet Dent. 2022; 127: 793-800
        • Zhang Y.
        Making yttria-stabilized tetragonal zirconia translucent.
        Dent Mater. 2014; 30: 1195-1203
        • Zhang F.
        • Inokoshi M.
        • Batuk M.
        • Hadermann J.
        • Naert I.
        • Van Meerbeek B.
        • et al.
        Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations.
        Dent Mater. 2016; 32: e327-e337
        • Bravo-Leon A.
        • Morikawa Y.
        • Kawahara M.
        • Mayo M.J.
        Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content.
        Acta Materialia. 2002; 50: 4555-4562
        • Wang J.
        • Rainforth M.
        • Stevens R.
        The Grain Size Dependence of the Mechanical Properties in TZP Ceramics.
        in: Meriani S. Palmonari C. Zirconia’88: Advances in Zirconia Science and Technology. Springer Netherlands, Dordrecht1989: 337-366
        • Inokoshi M.
        • Shimizu H.
        • Nozaki K.
        • Takagaki T.
        • Yoshihara K.
        • Nagaoka N.
        • et al.
        Crystallographic and morphological analysis of sandblasted highly translucent dental zirconia.
        Dent Mater. 2018; 34: 508-518
        • Laksono H.
        The clinical potential and limits of the all-ceramic fixed partial denture restorations Madj Persat Dokt Gigi.
        Indones. 2007; 40: 186-192
        • Kwon S.J.
        • Lawson N.C.
        • McLaren E.E.
        • Nejat A.H.
        • Burgess J.O.
        Comparison of the mechanical properties of translucent zirconia and lithium disilicate.
        J Prosthet Dent. 2018; 120: 132-137
        • Preis V.
        • Behr M.
        • Rosentritt M.
        In vitro fatigue and fracture testing of implant supported anterior ceramic crowns.
        Int J Prosthodont. 2018; 31: 264-266
        • Carrabba M.
        • Keeling A.J.
        • Aziz A.
        • Vichi A.
        • Fabian Fonzar R.
        • Wood D.
        • et al.
        Translucent zirconia in the ceramic scenario for monolithic restorations; A flexural strength and translucency comparison test.
        J Dent. 2017; 60: 70-76
        • Garling A.
        • Sasse M.
        • Becker M.E.E.
        • Kern M.
        Fifteen-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic.
        J Dent. 2019; 89: 103178
        • Reich S.
        • Endres L.
        • Weber C.
        • Wiedhahn K.
        • Neumann P.
        • Schneider O.
        • et al.
        Three-unit CAD/CAM-generated lithium disilicate FDPs after a mean observation time of 46 months.
        Clin Oral Investig. 2014; 18: 2171-2178
        • Kern M.
        • Sasse M.
        • Wolfart S.
        Ten-year outcome of three-unit fixed dental prostheses made from monolithic lithium disilicate ceramic.
        J Am Dent Assoc. 2012; 143: 234-240
        • Makarouna M.
        • Ullmann K.
        • Lazarek K.
        • Boening K.W.
        Six-year clinical performance of lithium disilicate fixed partial dentures.
        Int J Prosthodont. 2011; 24: 204-206
        • Taskonak B.
        • Mecholsky Jr., J.J.
        • Anusavice K.J.
        Fracture surface analysis of clinically failed fixed partial dentures.
        J Dent Res. 2006; 85: 277-281
        • Gardell E.
        • Larsson C.
        • von Steyern P.V.
        Translucent Zirconium Dioxide and Lithium Disilicate: A 3-Year Follow-up of a Prospective, Practice-Based Randomized Controlled Trial on Posterior Monolithic Crowns.
        Int J Prosthodont. 2021; 34: 163-172
        • Motta A.B.
        • Pereira L.C.
        • da Cunha A.R.
        • Duda F.P.
        The influence of the loading mode on the stress distribution on the connector region of metal-ceramic and all-ceramic fixed partial denture.
        Artif Organs. 2008; 32: 283-291
        • Quinn G.D.
        • Studart A.R.
        • Hebert C.
        • VerHoef J.R.
        • Arola D.
        Fatigue of zirconia and dental bridge geometry: Design implications.
        Dent Mater. 2010; 26: 1133-1136
        • Murase T.
        • Nomoto S.
        • Sato T.
        • Shinya A.
        • Koshihara T.
        • Yasuda H.
        Effect of connector design on fracture resistance in all-ceramic fixed partial dentures for mandibular incisor region.
        Bull Tokyo Dent Coll. 2014; 55: 149-155
        • Hamza T.A.
        • Attia M.A.
        • El-Hossary M.M.
        • Mosleh I.E.
        • Shokry T.E.
        • Wee A.G.
        Flexural strength of small connector designs of zirconia-based partial fixed dental prostheses.
        J Prosthet Dent. 2016; 115: 224-229
        • Takuma Y.
        • Nomoto S.
        • Sato T.
        • Sugihara N.
        Effect of framework design on fracture resistance in zirconia 4-unit all-ceramic fixed partial dentures.
        Bull Tokyo Dent Coll. 2013; 54: 149-156
        • Lohbauer U.
        • Amberger G.
        • Quinn G.D.
        • Scherrer S.S.
        Fractographic analysis of a dental zirconia framework: a case study on design issues.
        J Mech Behav Biomed Mater. 2010; 3: 623-629
        • Raigrodski A.J.
        • Hillstead M.B.
        • Meng G.K.
        • Chung K.H.
        Survival and complications of zirconia-based fixed dental prostheses: a systematic review.
        J Prosthet Dent. 2012; 107: 170-177
        • Plengsombut K.
        • Brewer J.D.
        • Monaco Jr., E.A.
        • Davis E.L.
        Effect of two connector designs on the fracture resistance of all-ceramic core materials for fixed dental prostheses.
        J Prosthet Dent. 2009; 101: 166-173
        • Kelly J.R.
        • Rungruanganunt P.
        • Hunter B.
        • Vailati F.
        Development of a clinically validated bulk failure test for ceramic crowns.
        J Prosthet Dent. 2010; 104: 228-238
        • Tzanakakis E.G.
        • Tzoutzas I.G.
        • Koidis P.T.
        Is there a potential for durable adhesion to zirconia restorations? A systematic review.
        J Prosthet Dent. 2016; 115: 9-19
        • McLaren E.A.
        • Lawson N.
        • Choi J.
        • Kang J.
        • Trujillo C.
        New High-Translucent Cubic-Phase-Containing Zirconia: Clinical and Laboratory Considerations and the Effect of Air Abrasion on Strength.
        Compend Contin Educ Dent. 2017; 38: e13-e16
        • Sulaiman T.A.
        • Abdulmajeed A.A.
        • Shahramian K.
        • Lassila L.
        Effect of different treatments on the flexural strength of fully versus partially stabilized monolithic zirconia.
        J Prosthet Dent. 2017; 118: 216-220
        • Nawafleh N.
        • Hatamleh M.
        • Elshiyab S.
        • Mack F.
        Lithium Disilicate Restorations Fatigue Testing Parameters: A Systematic Review.
        J Prosthodont. 2016; 25: 116-126
        • Scherrer S.S.
        • Lohbauer U.
        • Della Bona A.
        • Vichi A.
        • Tholey M.J.
        • Kelly J.R.
        • et al.
        ADM guidance-Ceramics: Guidance to the use of fractography in failure analysis of brittle materials.
        Dent Mater. 2017; 33: 599-620