Advertisement
Journal of Prosthetic Dentistry

Trueness and precision of artificial teeth in CAD-CAM milled complete dentures from custom disks with a milled recess

Published:December 01, 2022DOI:https://doi.org/10.1016/j.prosdent.2022.08.037

      Abstract

      Statement of problem

      Studies on the movement of artificial teeth during the manufacturing of computer-aided design and computer-aided manufacturing (CAD-CAM) complete dentures using the custom disk method with milled recesses and on whether the movement is within a clinically acceptable range are lacking.

      Purpose

      The purpose of this in vitro study was to assess the trueness and precision of the artificial teeth on custom disks the recesses of which were manufactured using a milling machine and to compare the results with the recesses manufactured using a 3-dimensional (3D) printer.

      Material and methods

      Four types of artificial teeth (maxillary left central incisors [Max-L1], mandibular left central incisors [Man-L1], maxillary left first premolars [Max-L4], and maxillary left first molars [Max-L6]) were prepared. Milling data were created, and 3 of each type of tooth were attached to each disk made up of 3 concentric circles (large, medium, and small). Five each of the 3D-printed custom disks and custom disks with milled recesses were milled based on the milling data. Standard tessellation language data were obtained through cone beam computed tomography and superimposed by using a CAD software program. Mean absolute error (MAE) values were calculated to assess trueness and precision; MAE values of artificial teeth in custom disks with milled recesses and 3D-printed custom disks were statistically compared by using the 2-way analysis of variance test with 2 factors, 2 types of custom disks and 4 types of artificial teeth, and the Tukey post hoc comparison (α=.05).

      Results

      Regarding position trueness, the MAE value of Man-L1 on the milling custom disk was significantly lower than that of the 3D-printed custom disk (P<.001), whereas the MAE values of Max-L4 and Max-L6 on the milling custom disk were significantly higher than those on the 3D-printed custom disk (P<.001). No significant difference was found in the MAE value of the position trueness of Max-L1 between the milling and 3D-printed custom disks. Regarding position precision, the MAE values of Max-L1, Man-L1, and Max-L4 on the milling custom disk were significantly lower than those on the 3D-printed custom disks (P=.002, P<.001, P=.025, respectively). However, no significant difference was seen in the MAE value of position precision of Max-L6 between the milling and 3D-printed custom disks (P=.180)

      Conclusions

      Movement of artificial teeth during the manufacture of dentures using the custom disk method and custom disks with milled recesses was within a clinically acceptable range.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Prosthetic Dentistry
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Al-Dwairi Z.N.
        • Tahboub K.Y.
        • Baba N.Z.
        • Goodacre C.J.
        A comparison of the flexural and impact strengths and flexural modulus of CAD/CAM and conventional heat-cured polymethyl methacrylate (PMMA).
        J Prosthodont. 2020; 29: 341-349
        • Iwaki M.
        • Kanazawa M.
        • Arakida T.
        • Minakuchi S.
        Mechanical properties of a polymethyl methacrylate block for CAD/CAM dentures.
        J Oral Sci. 2020; 62: 420-422
        • Wang C.
        • Shi Y.F.
        • Xie P.J.
        • Wu J.H.
        Accuracy of digital complete dentures: a systematic review of in vitro studies.
        J Prosthet Dent. 2021; 125: 249-256
        • Goodacre B.J.
        • Goodacre C.J.
        • Baba N.Z.
        • Kattadiyil M.T.
        Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques.
        J Prosthet Dent. 2016; 116: 249-256
        • Goodacre B.J.
        • Goodacre C.J.
        • Baba N.Z.
        • Kattadiyil M.T.
        Comparison of denture tooth movement between CAD-CAM and conventional fabrication techniques.
        J Prosthet Dent. 2018; 119: 108-115
        • Saponaro P.C.
        • Yilmaz B.
        • Johnston W.
        • Heshmati R.H.
        • McGlumphy E.A.
        Evaluation of patient experience and satisfaction with CAD-CAM-fabricated complete dentures: a retrospective survey study.
        J Prosthet Dent. 2016; 116: 524-528
        • Kattadiyil M.T.
        • Jekki R.
        • Goodacre C.J.
        • Baba N.Z.
        Comparison of treatment outcomes in digital and conventional complete removable dental prostheses fabrications in a predoctoral setting.
        J Prosthet Dent. 2015; 114: 818-825
        • Arakawa I.
        • Al-Haj Husain N.
        • Srinivasan M.
        • Maniewicz S.
        • Abou-Ayash S.
        • Schimmel M.
        Clinical outcomes and costs of conventional and digital complete dentures in a university clinic: a retrospective study.
        J Prosthet Dent. 17 February 2021; ([Epub ahead of print])https://doi.org/10.1016/j.prosdent.2020.12.014
        • Peroz S.
        • Peroz I.
        • Beuer F.
        • Sterzenbach G.
        • von Stein-Lausnitz M.
        Digital versus conventional complete dentures: a randomized, controlled, blinded study.
        J Prosthet Dent. 8 April 2021; ([Epub ahead of print])https://doi.org/10.1016/j.prosdent.2021.02.004
        • Kim T.H.
        • Huh J.B.
        • Lee J.
        • Bae E.B.
        • Park C.J.
        Retrospective comparison of postinsertion maintenances between conventional and 3D printed complete dentures fabricated in a predoctoral clinic.
        J Prosthodont. 2021; 30: 158-162
        • Kanazawa M.
        • Inokoshi M.
        • Minakuchi S.
        • Ohbayashi N.
        Trial of a CAD/CAM system for fabricating complete dentures.
        Dent Mater J. 2011; 30: 93-96
        • John A.V.
        • Abraham G.
        • Alias A.
        Two-visit CAD/CAM milled dentures in the rehabilitation of edentulous arches: a case series.
        J Indian Prosthodont Soc. 2019; 19: 88-92
        • Soeda Y.
        • Kanazawa M.
        • Arakida T.
        • Iwaki M.
        • Minakuchi S.
        CAD-CAM milled complete dentures with custom disks and prefabricated artificial teeth: a dental technique.
        J Prosthet Dent. 2022; 127: 55-58
        • Soeda Y.
        • Kanazawa M.
        • Hada T.
        • Arakida T.
        • Iwaki M.
        • Minakuchi S.
        Trueness and precision of artificial teeth in CAD-CAM milled complete dentures with custom disks.
        J Prosthet Dent. 26 March 2021; ([Epub ahead of print])https://doi.org/10.1016/j.prosdent.2020.12.049
        • Kim S.Y.
        • Shin Y.S.
        • Jung H.D.
        • Hwang C.J.
        • Baik H.S.
        • Cha J.Y.
        Precision and trueness of dental models manufactured with different 3-dimensional printing techniques.
        Am J Orthod Dentofacial Orthop. 2018; 153: 144-153
        • Sweeney S.
        • Smith D.K.
        • Messersmith M.
        Comparison of 5 types of interocclusal recording materials on the accuracy of articulation of digital models.
        Am J Orthod Dentofacial Orthop. 2015; 148: 245-252
        • Yamamoto S.
        • Kanazawa M.
        • Hirayama D.
        • Nakamura T.
        • Arakida T.
        • Minakuchi S.
        In vitro evaluation of basal shapes and offset values of artificial teeth for CAD/CAM complete dentures.
        Comput Biol Med. 2016; 68: 84-89
        • Yamamoto S.
        • Kanazawa M.
        • Iwaki M.
        • Jokanovic A.
        • Minakuchi S.
        Effects of offset values for artificial teeth positions in CAD/CAM complete denture.
        Comput Biol Med. 2014; 52: 1-7
        • Yamashina A.
        • Tanimoto K.
        • Sutthiprapaporn P.
        • Hayakawa Y.
        The reliability of computed tomography (CT) values and dimensional measurements of the oropharyngeal region using cone beam CT: comparison with multidetector CT.
        Dentomaxillofac Radiol. 2008; 37: 245-251
        • Huotilainen E.
        • Jaanimets R.
        • Valášek J.
        • et al.
        Inaccuracies in additive manufactured medical skull models caused by the DICOM to STL conversion process.
        J Craniomaxillofac Surg. 2014; 42: e259-e265