Abstract
Statement of problem
Making conventional facial impressions can be uncomfortable for the patient and complicated
for the prosthodontist. Using facial scanners to digitize faces is an alternative
approach. However, the initial costs of the equipment have prevented their widespread
use in dental practice, and the accuracy of ear scanning is unclear.
Purpose
The purpose of this in vitro study was to investigate the accuracy of a widely used
intraoral scanner for digitizing an ear model.
Material and methods
For reference, a silicone model of an ear was scanned with an industrial scanner.
Then, the model was scanned 5 times with an intraoral scanner. Five conventional impressions
of the model were made with a hydrocolloid impression material and poured with dental
stone. The stone casts were then digitized with a desktop scanner. The data sets acquired
with the 3 approaches were analyzed by using a 3-dimensional (3D) evaluation software
program. Trueness and precision values were calculated for each approach. Linear mixed
models with random intercepts were fitted to each sample to evaluate the effects of
the impression method on mean deviations (α=.05).
Results
Mean ±standard deviation trueness and precision values were 0.097 ±0.012 mm and 0.033
±0.015 mm, respectively, for the digital scan, and 0.092 ±0.022 mm and 0.081 ±0.024
mm for the conventional impression, showing a significantly lower deviation in precision
for the digital approach (P<.001).
Conclusions
The feasibility of digitizing an ear efficiently by using the investigated intraoral
scanner was demonstrated, and similar trueness and significantly better precision
values were achieved than when using conventional impressions. These promising results
suggest the need for clinical investigations.
To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to Journal of Prosthetic DentistryAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Fabrication of an orbital prosthesis using a noncontact three-dimensional digitizer and rapid-prototyping system.J Prosthodont. 2010; 19: 598-600
- Digital capture, design, and manufacturing of a facial prosthesis: clinical report on a pediatric patient.J Prosthet Dent. 2015; 114: 138-141
- Feasibility and accuracy of noncontact three-dimensional digitizers for geometric facial defects: an in vitro comparison.Int J Prosthodont. 2018; 31: 601-606
- Combined use of a facial scanner and an intraoral scanner to acquire a digital scan for the fabrication of an orbital prosthesis.J Prosthet Dent. 2019; 121: 531-534
- Digital workflow of auricular rehabilitation: a technical report using an intraoral scanner.J Prosthodont. 2019; 28: 596-600
- Feasibility and accuracy of digitizing edentulous maxillectomy defects: a comparative study.Int J Prosthodont. 2017; 30: 147-149
- Feasibility of intraoral scanning for data acquisition of maxillectomy defects.Int J Prosthodont. 2020; 33: 452-456
- Assessing the feasibility and accuracy of digitizing edentulous jaws.J Am Dent Assoc. 2013; 144: 914-920
- One-piece prosthesis using an acrylic base plate for rehabilitation of extensive midfacial defect: a case report.Int J Anaplast. 2015; 5: 1-5
- Advancements in soft-tissue prosthetics part A: the art of imitating life.Front Bioeng Biotechnol. 2020; 8: 1-20
- The auricular impression: an alternate technique.J Prosthodont. 2000; 9: 106-109
- Accuracy of capturing nasal, orbital, and auricular defects with extra- and intraoral optical scanners and smartphone: an in vitro study.J Dent. 2022; 117: 1-9
Article info
Publication history
Published online: December 29, 2022
Publication stage
In Press Corrected ProofFootnotes
Funding: Supported in part by JSPS KAKENHI Fund for the Promotion of Joint International Research, Fostering Joint International Research (B), grant #15KK0336.
Identification
Copyright
© 2022 by the Editorial Council for The Journal of Prosthetic Dentistry.